
978-1-6654-6636-3/22/$31.00 ©2022 IEEE

Proposed Methodology for Designing a
Microservice Architecture

Abstract—The changing needs of the enterprise require the

manageability of its information system. Therefore, it is crucial

to absorb these changes by orienting the design of the

information system towards a modern architecture that

decomposes the monolithic application into autonomous

services. This paper proposes an enterprise architecture

methodological framework to design the so-called microservice

architecture known as MSA. Our approach is to describe the

similarities between the MSA style of architecture and the

service-oriented architecture known as SOA, the latter having a

rich research literature focused on exploiting the methodology

for designing services in a service architecture. The result of the

comparative study indicates that the ideology for designing a

SOA is identical as MSA which ultimately relies on decomposing

applications into smaller components with a smaller and more

manageable footprint. Thus, we conclude that it is preferable to

use the adapted enterprise architecture methodology for SOA to

design MSA.

Keywords—SOA, MSA, UML, Monolithic Architecture, MDA,

software architecture design methodology, Praxeme

I. INTRODUCTION

Constant changes in business needs require a more flexible
approach to the design and development of an information
system. Managing enhancements, updates or other
modifications to the system becomes very complex and time-
consuming, especially for larger applications with strong
coupling. In addition, practitioners as well as researchers have
recently focused on exploiting cloud computing by migrating
the entire system to the cloud [1], [2]. Therefore, the adoption
of modern software architecture such as Service Oriented
Architecture (SOA) [3] and Micro-Service Architecture
(MSA) [4] is paramount. This paradigm is based on a
decomposition of the monolithic application into smaller and
autonomous elements called "services" [5]. In the early 2000s,
the presence of SOA becomes more apparent with its goal of
allowing flexibility for the design and creation of the
information system that traditional monolithic approaches do
not offer [6], while MSA being an improved version of SOA

attracts the attention of the business world from the year 2014
[7].

Therefore, software architecture design needs a
methodological framework whose role is to provide a
guideline for the description of the enterprise. The notion of a
such methodology was first glimpsed in 1987 by JA Zachman
[8]. Over the last twenty years, several methodological
frameworks have succeeded each other such as the Zachman
framework, the TOGAF enterprise architecture methodology
and the Federal Enterprise Architecture (FEA) framework.
However, (Valantina and al., 2014) [9] argue that these
approaches are not stable enough as they do not really take
into account requirements management, maintenance and
their process complexities. Researchers such as (Thierry and
al., 2013), (Razafindramintsa and al., 2016) and (Rapatsalahy
and al., 2021) then proposed the Praxeme methodology as an
emerging enterprise architecture method [10]-[16]. The latter
demonstrate that Praxeme is comprehensive, disciplined and
very well suited for SOA [10]-[16].

Yet, research on the appropriate methodological
framework for MSA is very rare. Indeed, this paper aims at
proposing an appropriate enterprise architecture methodology
with MSA. Our approach is to perform a comparative analysis
on SOA and MSA in order to exploit their similarities since
an enterprise methodology appropriate to SOA is widely
discussed in recent published research works. We find that
both architectures have great commonalities, especially on the
concept of dividing the monolithic application into services.
Thus, in this paper, we propose the Praxeme enterprise
methodology to design a so-called microservices architecture.
Praxeme is an enterprise methodology that consists in building
the information system by decomposing it into logical
services.

As for the structure of the plan of this article, section II
overviews relevant works related to enterprise architecture
methodologies. Subsequently, an overview of SOA and its
relationship with Praxeme is presented in section III. The
proposed approach is introduced in section IV before
concluding and discussing future work in section V.

Mihajasoa Léa Fanomezana
Laboratory for Mathematical and Computer Applied to

the Development Systems

(LIMAD)

University of Fianarantsoa, Madagascar
fmihajasoalea@gmail.com

Andrianjaka Miary Rapatsalahy
Laboratory for Mathematical and Computer Applied to

the Development Systems

(LIMAD)
 University of Fianarantsoa, Madagascar

andrianjaka92@yahoo.fr

Nicolas Raft Razafindrakoto
 Laboratory of Multidisciplinary Applied Research

(LRAM)
University of Antananarivo, Madagascar

rnraft@gmail.com

Costin Bădică
Faculty of Automation, Computers and Electronics

(ACE)

University of Craiova, Romania
costin.badica@edu.ucv.ro

303

20
22

 2
3r

d
In

te
rn

at
io

na
l C

ar
pa

th
ia

n
C

on
tro

l C
on

fe
re

nc
e

(I
C

C
C

) |
 9

78
-1

-6
65

4-
66

36
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
C

C
54

29
2.

20
22

.9
80

59
30

Authorized licensed use limited to: Anelis Plus consortium. Downloaded on July 05,2022 at 06:43:16 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Enterprise architecture is a method of tuning the
information system to the organizational needs in order to
achieve the business objective of the company. Thus, various
methodologies for implementing enterprise architecture have
followed one another over the years. Among them, we will
discuss the most studied and relevant ones which are Zachman
framework, Open Group Architecture Framework (TOGAF),
Federal Enterprise Architecture Framework (FEAF) and
Praxeme methodology.

(Zachman, 1987) [8] created a descriptive framework that
defines the architecture of the information system as a result
of its expansion and the complexity of its implementation. The
approach is based on a neutral and objective framework.
However, the methodology of strategic planning was not
introduced. (Pereira & Sousa, 2004) proposed a method to
facilitate the development of enterprise architecture based on
the Zachman framework. The proposed approach allows for
an efficient management of the information system and a
better understanding of the architectural components [17]. The
use of the Zachman framework to develop enterprise
integration of business processes based on SOA has been
presented [18]. In addition, the place of SOA in the Zachman
framework has been demonstrated by (Barekat and al., 2013)
[19] to make complex information systems more flexible and
agile.

According to (Benkamoun and al., 2014) [20], Zachman
framework seems to be the most studied and exploited by
many companies and researches. It allows low-cost
development based on the reuse of business models.
Nevertheless, it has less integration and appropriate
methodology and does not provide formal definitions and
modeling language [21].

TOGAF was created by the U.S. Department of Defense
as guidance for the evolution of its technical architecture,
before the year 1990. Then the Open Group developed it
starting with 1990, with its first version being released in
1995. In 2004, TOGAF 8 was launched and TOGAF 9 a more
advanced version is planned in 2009 [22].

(Wahab and Arief, 2015) [23] assembled an integrated
model of COBIT with the TOGAF framework for a
comprehensive design of IT governance in local government
and a resolution of the risk management control problem. The
article by (Kabzeva and al., 2010) [24] states that in order to
take advantage of the benefits of SOA such as application
reusability and rapid adaptability to changing requirements,
enterprises apply architecture frameworks. In addition,
governance approaches have been used to overcome the
challenges faced by SOA. The latter applied TOGAF for the
design and governance of the architecture of a large-scale
SOA-based project [24]. (Ni & Li, 2017) [25] also proposed
the combination of TOGAF framework with SOA for agile
evolution by adopting reusability and interoperability of
applications.

TOGAF is a more detailed method and has a set of tools
to support the development of a business process architecture
and information system that can be freely used by any
organization due to their good features [22], [23]. The
TOGAF framework is composed of clear steps as presented in
Figure 1. However, some limitations of TOGAF have been
highlighted as a case in point the lack of information on the

maintenance of the framework, the lack of integration
between the different proposed artifacts, and finally the
exclusion of strategic aspects [9], [21].

FEAF is an architecture framework that is designed to be
used by the U.S. federal government. According to the authors
of the article [26], it consists of simplifying and developing
processes and information shared by the federal and
government agencies as well as defining the planning of the
organization's architecture.

In the paper of (Mahdavifar and al., 2012) [27], due to the
failure of addressing the testing process at the level of an
enterprise architecture project, a method was proposed for the
improvement of the testing process in the federal architecture
framework using the International Software Testing
Qualification Board (ISTQB) framework. Then, (Defriani &
Resmi, 2019) presented a study that aims to plan the e-
government architecture in Purwakarta districts by developing
the e-government. The approach adopted is the FEAF
framework using the Collaborative Planning Methodology
(CPM) [28]. On the other hand, an approach of combining
Enterprise Architecture with SOA was proposed to better meet
the agile needs of the enterprise. The authors opted for the use
of FEAF. This combination produces a homogeneous
framework named Service Oriented Enterprise Architecture
(SOEA) to document the business and IT aspects of the
organization [29].

The strength of the FEAF framework is its ability to
describe and develop plans from current to future conditions
with well-detailed planning steps. However, studies on FEAF
and SOA are very rare whereas the SOEA approach has been
successfully applied other enterprise architecture
methodologies.

Praxeme is an enterprise architecture methodology that
allows you to build your information system from a set of
basic units called logical services. It is of French origin and
comes from the combination of the Latin words "praxis"
(action) and "semeion" (meaning) which translates to "the
meaning of action" [30].

The research work of (Thierry and al., 2013) [10]
evaluates the reliability and robustness of Praxeme in its
model transformation. The latter demonstrates that the
persistence of business rules and performance indicators

Fig. 1. Architecture Development Method (ADM) Cycle

304

Authorized licensed use limited to: Anelis Plus consortium. Downloaded on July 05,2022 at 06:43:16 UTC from IEEE Xplore. Restrictions apply.

through this model transformation supports its robustness
from the modeling design to the operational stage.

On the other hand, Praxeme does not offer a model that is
representative of the intentional aspect of the business.
Therefore, (Razafindramintsa and al., 2016) [15] proposes an
approach to transform the eLEL (elaborated Language-
Extended Lexicon) requirement model into a business model
in the Praxeme methodology. The objective of
(Razafindramintsa and al., 2016) [15] is to automatically
derive the semantic aspect of Praxeme using the natural
language oriented intentional model. On the other hand,
researchers (Rapatsalahy and al., 2020, 2021) instantiated the
ReLEL (Restructured elaborated Language-Extended
Lexicon) requirement model in Praxeme for automating the
software development process from the enterprise intention
model [11]-[13].

Praxeme inherits and expands the methods proposed
during the last thirty years including Zachman framework,
Merise and other design methods by taking into account the
combination of SOA with model-driven architecture (MDA).
(Rapatsalahy and al., 2021) and (Roucairol and Caseau, 2011)
[12], [31] confirm that Praxeme and SOA go well together for
the design and development of information systems.

Praxeme is thus an enriched method, more advanced,
capable of managing change and transformation of the
company, and moreover, it is an open approach benefiting
from more and freely available documentation [10]. Its
advantage is that it captures all aspects of the company using
a reduced set of conceptual artifacts. In addition, it suggests
the use of UML for modeling each aspect of the enterprise, it
uses the MDA approach to automate the transition from one
aspect to another, and it adopts the SOA architecture to absorb
the frequent changes in the enterprise requirements.
Nevertheless, it does not provide a model for the
representation of the enterprise intent [12], [13].

III. OVERVIEW OF THE SERVICE-ORIENTED ARCHITECTURE

AND ITS RELATIONSHIP WITH PRAXEME

A. Concept of SOA

Before the year 2000, information systems were always
designed and built according to the monolithic architecture
where the software components are all combined into a single
monolithic block. This approach creates a high
interdependence between the features of the application and
an increased complexity of the system as well as a more
difficult or even impossible evolution of the system. This is
where SOA comes in. It is a software architecture for the
design and development of systems that consists in
subdividing a large and complex application into several
fundamental elements called "services". This approach has the
following two objectives:

• Partitioning the application into several autonomous
and reusable modular services to make it less
complex and more flexible.

• Achieving interoperability between several systems
running on different technologies.

SOA proposes the adoption of the Cloud environment for
system development and deployment [2]. It is composed of
two main functions which are the service provider and the
service consumer. Thus, the service provider has the role of
creating and publishing the service with a standardized

description, following the requirements of the service
consumer (requester). The latter searches the service in the
service registry and then calls (invokes) it. The connection
between the service requester and the service consumer is
achieved through a mediator called ESB (Enterprise Service
Bus) that ensures the weak coupling between Web services.

The best technology for implementing SOA conceptual
services are Web services, either based on SOAP or Rest [12].
The basic technological standards of Web services in SOA are
represented by:

• WSDL (Web Service Description Language),
describing the remote interface of Web services.

• SOAP (Simple Object Access Protocol), transporting
and exchanging messages between Web services.

• UDDI (Universal Description, Discovery and
Integration), the registry for Web services discovery,
useful for publishing and searching for specific Web
services (Figure 2) [32].

B. Praxeme concept

Faced with the complexity and rigidity of information
systems due to the permanent evolution of organizational
needs, the company decides to opt for a service-oriented
architecture being able to guarantee the agility of its system.
An enterprise architecture methodological framework for
SOA design must therefore be highlighted in order to better
take advantage of this approach. Indeed, among
methodologies studied in this article, Praxeme provides the
best support to be combined with SOA.

According to (Vauquier, 2010) [33], Praxeme is a
framework that covers the modeling of all aspects of the
enterprise, from strategy to deployment. It is represented by a
topology of the enterprise system that has nine aspects, of
which the generation of SOA services is done from the logical
aspect. Praxeme methodology combines MDA and SOA
approaches by organizing the information system around a
basic unit called a logical service (logical aspect) [13]. In other
words, Praxeme structures the system by breaking it down into
several logical services. Derivation rules are applied to the
semantic or pragmatic models to produce the SOA logical
services. As shown in Figure 3, services are placed in the
logical machine which is stored in the logical workshop,
located itself in the logical factory [11]. The logical aspect is
an intermediary element between the business view (semantic
and pragmatic aspect) and the computing view (software
aspect) which ensures the control of the complexity of the
information system by separating the two aspects (Figure 4).

Fig. 2. SOAP Web Service concept

305

Authorized licensed use limited to: Anelis Plus consortium. Downloaded on July 05,2022 at 06:43:16 UTC from IEEE Xplore. Restrictions apply.

Moreover, according to (Rapatsalahy and al., 2021) [12], the
Model Driven Architecture (MDA) allows the automation of
the software development process using the model

transformation technique, i.e. model to model (M2M) and/or

model to text (M2T).

IV. PROPOSED APPROACH

This paper aims at suggesting an appropriate enterprise
methodology to design microservices. Our approach consists
in making a comparative analysis between SOA and MSA.
Therefore, acquiring a good notion of MSA will allow us to
assimilate both architectures.

MSA is a software design and development architecture
based on smaller pieces called "microservices". According to
(Fowler and al., 2014) [34], MSA represents a suite of small
services developed and deployed independently. In other
words, each microservice evolves and executes itself in its
own process. Microservices communicate via an API and a
very lightweight messaging protocol such as HTTP and
REST. This approach is designed to enhance SOA by
decomposing information system (IS) into smaller and
simpler services. Thus, it is a new architectural style that
provides the same goal as SOA, which is to simplify the
application design by making it more flexible and scalable to
the changing needs of the organization. From 2014, it has
become a more powerful architecture on which many modern
applications such as Netflix, Amazon and Soundcloud
platforms are based [35].

Table I shows a comparative analysis between MSA and
SOA.

TABLE I. COMPARATIVE ANALYSIS OF MSA AND SOA

 SOA MSA
Definition Design and development architecture of an

information system based on services in order to
control the complexity of the IS and make it more
flexible to changes.

Design and development architecture of an
information system based on micro-services in
order to control the complexity of the IS and to
make it more flexible to changes.

Cloud-based Yes Yes
Sharing of resources
between departments

Designed to support communication between
two or more applications to share as much
resources as possible [35].

Designed to share as few resources as possible
to support the autonomy of microservices [35].

Remote access
protocols

Uses remote protocols like SOAP [12] Uses lightweight protocols like REST [5]

Communication Services communicate via an ESB Services communicate via an API
Granularity Coarse grain service Fine grain service
Scope or coverage Suitable for large systems that are quite often

composed of several application services, which
are also composed of several infrastructure
services [35] [5].

Suitable for small applications where each
microservice is a small application contained
within its own hexagonal architecture that has
business logic and various adapters [36] [5].

Interoperability [5] Each service can operate with any technology. Each microservice can run with any technology
Governance Common data governance mechanisms and

standards for all services [37].
Decentralized governance [36].

Reusability Services can be reused by other external or
internal services in an integrated service
infrastructure [37].

Microservices do not share source code, and
rewriting the code is preferred rather than
reusing it [2]

Data storage All services have only one data storage [2]. Microservices do not share a database (each
one manages its own data) [2].

Fig. 4. The topology of the enterprise system [28]

Fig. 3. Metaphorical terminology applied to the logical aspect [13]

306

Authorized licensed use limited to: Anelis Plus consortium. Downloaded on July 05,2022 at 06:43:16 UTC from IEEE Xplore. Restrictions apply.

We found common elements for both architectures (SOA
and MSA):

• Same approach for IS design and development.
• Same goal for breaking down efficiently large and

complex applications into smaller and more flexible
elements to design and organize.

• All of services can use any programming languages.
• Both involve a cloud environment for application

development and deployment.
Both architectures’ analysis result indicates the conformity

of SOA design ideology with MSA’s one, by facilitating
management of large and rigid applications in decomposing
them into several smaller fundamental elements. In this
article, we suggest using an enterprise architecture
methodology adapted for SOA to design MSA, namely
Praxeme methodology.

 The logical model under Praxeme logical aspect is made
up of logical factory, logical workshop, logical machine and
services (Figure 3 and Figure 5) [13]. (Rapatsalahy and al.,
2021) [12] have already suggested the automatic generation of
SOA services within Praxeme. For this purpose, they have
given rules for mapping Praxeme Logical Factory model to a
WSDL model then rules for translating WSDL model into an
XML-based WSDL file describing totally a Web service [12].

According to "microservice" word semantics, the idea is
so to split application entities into as small as possible units
(i.e. micro units). This paper therefore proposes to use logical
machine containing microservices the smallest component of
Praxeme logical model.

Nevertheless, the manual decomposition of the logical
workshop containing the logical machine at the time of logical
modeling proposed by (Rapatsalahy and al., 2021) [13]
promotes a waste of time for software architects and a non-
optimal information system design. Therefore, the approach
we propose is to automate from the semantic aspect the design
of the logical workshops of the Praxeme logic model. Indeed,
the decomposition into subdomains must be positioned in the
semantic modeling. According to our method shown in Figure
5, the orchestration container is modeled from the logical
factory, then, the microservices container from the logical
workshop and finally the microservices themselves are
designed from the logical machine. In addition, we also

suggest the attributes of the semantic model to become a
component of the logical machine named "data structure" to
model the database related to each designed microservice. The
components of the MSA architecture such as the orchestration
container, the microservice’s container, the microservice and
the database represent the software aspect of the Praxeme
methodology (Figure 5).

V. CONCLUSION AND FUTURE WORK

Faced with the complexity of IS management due to
constant changes in requirements, companies need a modern
software architecture. Thus, SOA has attracted the attention of
practitioners and researchers in order to efficiently design IS.
SOA consists in decomposing the monolithic application into
several autonomous and reusable services [6]. Then, an
improved variant of SOA called MSA, emerged [7]. It is more
advanced software architecture with smaller and independent
services [35]. Our study aims at showing a methodological
framework for the design of microservices. According to the
study of other relevant methodologies, we concluded that
Praxeme is the enterprise architecture framework very well
adapted to SOA aiming to construct IS by decomposing them
into logical services [13]. On the other hand, studies on the
methodological framework for designing MSA are very rare.
Our approach is based on a comparative analysis of SOA and
MSA and shows that the conception of both architectures is
actually based on the same ideology which consists in the
decomposition of the application into smaller elements. We
thus propose Praxeme methodological framework to
automate, improve as well as to simplify conception of MSA
architecture. Indeed, our method consists in modeling
microservices from logical machine contained in logical
workshop which is automatically decomposed from the
semantic aspect of Praxeme. In this paper, we equally suggest
to model orchestration container from logical factory,
microservice container from logical workshop and also
corresponding database to each microservice from data
structure.

Our recommendation is indeed more complete as it not
only allows us to design MSA efficiently but also to model it
up to database layer, and also more accurate reason being
designing all of MSA components is explicitly described in
Praxeme logic model. Let’s notice we have just studied
Praxeme as a methodology for designing MSA. And we plan
to detail, practice and evaluate the proposed methodology in
future work as to automatically develop microservice-based
applications.

REFERENCES

[1] O. Al-Debagy, and P. Martinek, “A Comparative Review of
Microservices and Monolithic Architectures”, in 2018 IEEE 18th
International Symposium on Computational Intelligence and
Informatics (CINTI), nov. 2018, pp. 000149‑000154. doi:
10.1109/CINTI.2018.8928192.

[2] J. A. Bigheti, M. M. Fernandes, and E. P. Godoy, “Control as a service:
a microservice approach to Industry 4.0”, in 2019 II Workshop on
Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT), 2019, pp.
438‑443.

[3] K. B. Laskey, and K. Laskey, "Service oriented architecture", WIREs
Computational Statistics, vol. 1, no 1, pp. 101‑105, 2009, doi:
10.1002/wics.8.

[4] M. Grambow, L. Meusel, E. Wittern, and D. Bermbach,
"Benchmarking microservice performance : a pattern-based approach",
in Proceedings of the 35th Annual ACM Symposium on Applied

Fig.5. Illustration of the MSA generation within Praxeme

307

Authorized licensed use limited to: Anelis Plus consortium. Downloaded on July 05,2022 at 06:43:16 UTC from IEEE Xplore. Restrictions apply.

Computing, New York, NY, USA: Association for Computing
Machinery, 2020, pp. 232‑241. doi: 10.1145/3341105.3373875

[5] A. Andriyanto, R. Doss, and P. Yustianto, "Adopting SOA and
Microservices for Inter-enterprise Architecture in SME
Communities ", in 2019 International Conference on Electrical,
Electronics and Information Engineering (ICEEIE), oct. 2019, vol. 6,
pp. 282‑287. doi: 10.1109/ICEEIE47180.2019.8981437.

[6] Z. Xiao, I. Wijegunaratne, and X. Qiang, "Reflections on SOA and
Microservices", in 2016 4th International Conference on Enterprise
Systems (ES), 2016, pp. 60‑67.

[7] F. Rademacher, J. Sorgalla, S. Sachweh, and A. Zündorf, "Towards a
Viewpoint-specific Metamodel for Model-driven Development of
Microservice Architecture", arXiv preprint arXiv:1804.09948, 2018.

[8] J. A. Zachman, "A framework for information systems architecture",
IBM Systems Journal, vol. 26, no 3, pp. 276‑292, 1987, doi:
10.1147/sj.263.0276.

[9] G. M. Valantina, S. Jayashri, and K. D. Melmaruvathur, "A Framework
for Evaluation Enterprise Architecture Implementation
Methodologies", 2014.

[10] T. Biard, M. Bigand, and J. P. Bourey, "La méthode Praxeme : une
nouvelle approche de l’Architecture d’Entreprise", 2013.

[11] A. M. Rapatsalahy, H. Razafimahatratra, T. Mahatody, M. Ilie, S. Ilie,
and R. N. Raft, "Automatic generation of software components of the
Praxeme methodology from ReLEL", in 2020 24th International
Conference on System Theory, Control and Computing (ICSTCC),
2020, pp. 843‑849.

[12] A. M. Rapatsalahy, R. Hajarisena, I. Mihaela, M. Thomas, I. Sorin, and
R. N. Raft, "Automatic generation of Web service for the Praxeme
software aspect from the ReLEL requirements model", Procedia
Computer Science, vol. 184, pp. 791‑796, janv. 2021, doi:
10.1016/j.procs.2021.03.098.

[13] A. M. Rapatsalahy, R. Hajarisena, I. Mihaela, M. Thomas, I. Sorin, and
R. Raft, "Derivation of Logical Aspects in Praxeme from ReLEL
Models":, in Proceedings of the 16th International Conference on
Evaluation of Novel Approaches to Software Engineering, Online
Streaming, --- Select a Country ---, 2021, pp. 413‑420. doi:
10.5220/0010493004130420.

[14] A. M. Rapatsalahy, H. Razafimahatratra, T. Mahatody, M. Ilie, S. Ilie,
and R. N. Razafindrakoto, "Automatic Generation of Object-Oriented
Code from the ReLEL Requirements Model", SYSTEM THEORY,
CONTROL AND COMPUTING JOURNAL, vol. 1, no 1, pp. 36‑47,
2021.

[15] J. L. Razafindramintsa, R. J. Paul, T. Mahatody, and A. Becheru,
"Semantic aspect derivation of the Praxème methodology from the
elaborate lexicon extended language", in 2016 20th International
Conference on System Theory, Control and Computing (ICSTCC), oct.
2016, pp. 842‑847. doi: 10.1109/ICSTCC.2016.7790773.

[16] J. L. Razafindramintsa, T. Mahatody, J. P. Razafimandimby, and S. M.
Simionescu, "Logical services automatic location from eLEL", in 2017
21st International Conference on System Theory, Control and
Computing (ICSTCC), 2017, pp. 849‑854.

[17] C. M. Pereira, and P. Sousa, "A method to define an Enterprise
Architecture using the Zachman Framework", in Proceedings of the
2004 ACM symposium on Applied computing, 2004, pp. 1366‑1371.

[18] J. Espadas, D. Romero, D. Concha, and A. Molina, "Using the zachman
framework to achieve enterprise integration based-on business process
driven modelling", in OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems", 2008, pp. 283‑293.

[19] V. Barekat, E. B. Nejad, and S. E. Alavi, "Definition of zachman
framework cells based on service oriented architecture", International
Journal of Scientific and Research Publications, vol. 3, no 9, pp. 1‑8,
2013.

[20] N. Benkamoun, W. ElMaraghy, A.-L. Huyet, and K. Kouiss,
"Architecture framework for manufacturing system design", Procedia
CIRP, vol. 17, pp. 88‑93, 2014.

[21] H. Aqallal, "Architecture d’entreprise et système de justice civile au
Canada". HEC Montréal, 2013.

[22] L. Sofyana, and A. R. Putera, "Business architecture planning with
TOGAF framework", in Journal of Physics: Conference Series, 2019,
vol. 1375, no 1, pp. 012056.

[23] I. H. A. Wahab, and A. Arief, "An integrative framework of COBIT
and TOGAF for designing IT governance in local government", in 2015
2nd International Conference on Information Technology, Computer,
and Electrical Engineering (ICITACEE), 2015, pp. 36‑40.

[24] A. Kabzeva, M. Niemann, P. Müller, and R. Steinmetz, "Applying
TOGAF to Define and Govern a Service-oriented Architecture in a
Large-scale Research Project", in AMCIS, 2010, pp. 356.

[25] F. Ni, and R. Li, "TOGAF for Agile SOA Modelling", 2017.

[26] A. Akkasi, and F. Shams, "Presenting A Method for Benchmarking
Application in the Enterprise Architecture Planning Process Based on
Federal Enterprise Architecture Framework", in 2008 3rd International
Conference on Information and Communication Technologies: From
Theory to Applications, 2008, pp. 1‑6.

[27] H. Mahdavifar, R. Nassiri, and A. Bagheri, "A method to improve test
process in federal enterprise architecture framework using istqb
framework", International Journal of Computer and Information
Engineering, vol. 6, no 10, pp. 1199‑1203, 2012.

[28] M. Defriani, and M. G. Resmi, "E-government architectural planning
using federal enterprise architecture framework in Purwakarta districts
government", in 2019 Fourth International Conference on Informatics
and Computing (ICIC), 2019, pp. 1‑9.

[29] M. K. Haki and M. W. Forte, "Service oriented enterprise architecture
framework", in 2010 6th World Congress on Services, 2010, pp.
391‑398.

[30] H. Fallon, and B. Vandenbulcke, "AgwA architecture office: study
cases on structure and architecture", in ICSA2013-Second International
Conference on Structures and Architecture, 2013, pp. 0‑0.

[31] R. Gérard, and C. Yves, "Urbanisation, SOA et BPM : le point de vue
du DSI", Dunod, Paris, 2011.

[32] N. Al-Rawahi, and Y. Baghdadi, "Approaches to identify and develop
Web services as instance of SOA architecture", in Proceedings of
ICSSSM ’05. 2005 International Conference on Services Systems and
Services Management, 2005., Chongquing, China, 2005, pp. 579-584
Vol. 1. doi: 10.1109/ICSSSM.2005.1499538.

[33] D. Vauquier, "Enterprise Methodology: An Approach to
Multisystems", in Complex Systems Design & Management, M.
Aiguier, F. Bretaudeau, et D. Krob, Éd. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 317‑328. doi: 10.1007/978-3-642-15654-
0_23.

[34] M. Fowler, and J. Lewis, "Microservices, 2014", URL:
http://martinfowler. com/articles/microservices. html, vol. 1, no 1, pp.
1‑1, 2014.

[35] H. Bloch, A. Fay, T. Knohl, and M. Hoernicke, "A microservice-based
architecture approach for the automation of modular process plants", in
2017 22nd IEEE international conference on emerging technologies
and factory automation (ETFA), 2017, pp. 1‑8.

[36] P. Di Francesco, P. Lago, and I. Malavolta, "Architecting with
microservices: A systematic mapping study", Journal of Systems and
Software, vol. 150, pp. 77‑97, 2019.

[37] M. K. Haki, and M. Wentl, "Service-oriented business-it alignment: a
SOA governance model", 2010.

308

Authorized licensed use limited to: Anelis Plus consortium. Downloaded on July 05,2022 at 06:43:16 UTC from IEEE Xplore. Restrictions apply.

