
1

Version History:

• July 2009 – compiled from sources cited further + original slides
• Sept 2009 – updated to reflect suggested amendments to English terminology,
enhanced intro to modelling activities, and more dynamic presentation

Etymology:

Praxis (Greek)
Action, activities that change the surrounding context

Séméion (Greek)
Sense, meaning, signification

Hence the subtitles:
o “Le sens de l'action” [fr]
o Meaning in Action [en]

2

3

NOTE on the template:
I li ith th l f th li i i t id ti th t thIn compliance with the clause of the license requiring to avoid any suggestion that the
PRAXEME Institute endorses works by third parties, a personal logo has been added in
the top left corner. If you decide to reuse any part of these works, you can easily edit the
logo via the main slides master (view > Slides Master). You will also edit the very first
slide. There's no other place elsewhere with a specific indication of name or company.

4

5

6

7

Lack of reference methods
• Merise SDM/S Axial SA/SD SSADM Jackson are not used anymore• Merise, SDM/S, Axial, SA/SD, SSADM, Jackson, … are not used anymore
• UP, RUP, XP, Scrum are delivery methods
• EA Frameworks, TOGAF, Zachman, insist on processes and forget models

(this is changing)
• Best practices are not methods: ITIL, CMMI, CoBit, SOMA, ...

Recurrent Issues
• Architecture in silos
• Redundancy at all levels
• Communication between actors
• Find a good path to target
• Knowledge management and documentation
• Organizational dysfunctions

The current low-level of modelling activities do:
• Reduce sharing of ideas
• Increase the silos syndrome
• Increase the duplication of work
• Shrink opportunities to innovate

The current abuse of Business Process Modelling as the central modelling
technique can only cast into stone the existing splits and conflicts between
functional domains

• PRAXEME will demonstrate that Pragmatic models can’t possibly yield
Semantic artefacts. Consequence: with only Business Process Modelling
you are doomed to miss something

Other disciplines provide tools and good bricks but no plans
• Object-oriented Patterns
• Business Process Management (BPM), object oriented design, SOA

(Service Oriented Architecture)…
• MDA (Model Driven Architecture) specified by OMG

8

Architecture is the art of splitting. Splitting a problem into bits organized in a structure, so
th t i l t ti d thl d f lfil i t M i i tthat implementation can proceed smoothly and fulfil requirements. Many viewpoints can
be used: functions, data, time sequence, processes, states, services, ...

In the field of SOA, notably, the most known methods are good collections of best
practices and heuristic rules. They can probably lead to the definition of sane systems if
not strong. However, they always leave the sentiment that services (and the possible
web service specifications that ensue) are casted out of 'thin air'. In other words, it's very
hard—but by self conviction—to make any demonstration that this set of services is the
one that derives from the business itself, and any other definition would just be good
guesses.

That is were PRAXEME makes a significant contribution. Numerous services in a
service oriented architecture will be derived—like calculated—by an application of
PRAXEME procedures, instead of being best guesses!
Moreover, the distinction becomes very clear between the stable core, and the versatile
periphery that will follow (or even precede) any reorganisation of the company
operations.

9

PRAXEME is a methodology. What does a methodology contain?

The Pro3 scheme defines 3 dimensions which an Enterprise Methodology must
describe:
- Products: this is the result of the method application. This dimension is
completely dedicated to what we want to realize and why, absolutely not by how
we will manage to realize it.
- Processes: this is part of how we will realize the thing. The Process dimension
how the works are distributed to different people, what are their respective roles,
their interactions, the work steps and activities to carry on, and in what sequence.
This is a collective view on the way to perform the works.
- Procedures (or techniques): this part of the “how”, describing the techniques to
be used to conduct the various activities by each person. For instance, how to
derive meta-data for the database from the UML class diagrams. This is an
individual view into the techniques beside each activity inside the processes.

Side example:
process: invoicing = collect order details + draft invoice + approve + account +
send,
procedures: query database, add & multiply by quantities, calculate tax,
exchange a document electronically

10

All methodologies share the purpose of producing artefacts (products in the form of
l ti d t ti l f d ti it ft tsolutions, documentation, plans, means of productivity, software, component

assemblies) with a higher quality and faster. PRAXEME achieves this with an emphasis
on procedures, and therefore may complement all others that focus on the process
dimension.

11

SITAF is quite original, and we just want to cite this architecture at this stage. Indeed, understanding is
impossible without first understanding the PRAXEME methodology Yet it is important to assess thatimpossible without first understanding the PRAXEME methodology. Yet, it is important to assess that
PRAXEME is not an architecture, neither an architecture style, but a methodology. This means too that
other architecture frameworks can be used along with PRAXEME. The architecture of choice is actually
injected into PRAXEME at the point of Logical Modelling, and onwards.

SITAF relies on four levels of IS restructuring (Reality, Logical, Referential and Governance) and two
transversal Enterprise Architecture (Data and Process).
Reality level: This level describes the reality of the company; its data and its processes without IT concerns.
The usual separation of concerns is used to clearly distinguish the business view from the organizational
view.
Logical level: Once the reality is described, the logical representation must be managed. The objective is to
attain more IT representations but not yet reliant on any specific software tools.
Referential level: With help from MDM, BRMS and BPM, hard-coded implementations are no longer
required. Indeed, a set of derivation rules allows for setting up business referentials from logical models
directly.
Governance level: Obviously, this level is not modelling nor IT oriented. The governance provides business
users and IT specialists with all business governance features such as: collaborative provisionning,
dynamic querying (data hierarchies), right and security management, version and context management,
auditability and total traceability, business regulation compliance, etc.
This governance is feasible with help from business referentials only: MDM, BRMS and BPM. Without
setting up these referentials, a large part of the Information System would be hard-coded and opaque for
users. Conversely, a right utilization of MDM, BRMS and BPM (in this natural path) allows for freeing IS
agility and traceability. IS Architects must understand that agility and traceability are feasible only if
reference and master data are tackled first. It is not relevant and actually un-sustainable to set up a BRMS
first when data management and quality are approximate or bad.

The Agility Chain Management System (ACMS) is formed by three types of Business Referentials
corresponding to Master Data Management (MDM), Business Rules Management (BRMS) and finally
Business Process Management (BPM). It is not feasible to restructure Information Systems in a sustainable
manner without fixing reference and master data first. In a second step it becomes possible to add rules
management. Only in the last step, processes can be implemented in a right way.

12

Process Modelling in such a context does attempt identifying and extracting logical bits
t f h il l th id t t t d li t d i h i kout of each silo, along the idea to cut-out duplicates and increase sharing, make some

bits re-usable, and re-link those bits in new chains of activities that ought to be more
flexible…

It’s like trying to hold a wall from collapsing while at the same time people change bricks
in many places. In the end, the wall will roughly look the same, with different materials at
some places…

13

With or without PRAXEME, an objective of SOA is fostering re-use, here in the form of
i I th d t l i f SOA i th b fit th t b dservices. In other words, a recurrent claim of SOA is the benefits that can be earned

from increasing the sharing of resources.
To simplify, these resources can both be data resoirces and functional resources. The
'service' paradigm encompasses both data-access-type-of services and calculation-type-
of services, plus all intermediate mixes of forms.

14

With or without PRAXEME, the use of SOA design procedures changes
dramatically the aspect of IT systemsdramatically the aspect of IT systems.

The main changes are bound to a simple decision: isolate the business objects
in well identified fields of the system. The core of the system must now be
structured with Objects Domains and not with functional domains. The part
isolated this way is largely reusable.

15

A key in designing SOA with Praxeme is the distinction between Semantic and
P ti t O h di ti ti i d t d d th d lliPragmatic aspects. Once such distinction is understood, and the proper modelling
works are conducted in each case, most of the other models—and the services
notably—can be derived almost mechanically. Of course, designers are capable of
taking many different orientations, but the core semantic models will never be
compromised.

Pragmatic aspects reflect the organisation: how the business actually takes place,
what the company wants to control, how it tracks the flow of goods and money, the
division of labor, who can do what and at what time, and so forth.

Semantic aspects model the objects of the world, whether in "reality" (a car, the
damage to a house, cash, color, measurements, a financial instrument, a portfolio, a
date, a company, …) or virtual (the assignment of an account manager to a customer, a
role, an indemnity, depreciation, preferences, …) , and the associations between these
objects.

The distinction between semantic and pragmatic, and the systematic derivations
that ensue will altogether drive the definition of services in the architecture.

16

PRAXEME makes an extensive use of existing modelling standards, tools and
techniques. To that extent, nothing is original in PRAXEME. It is the way these
tools are used that is original.

PRAXEME has anyhow an original contribution of its own: a notation for pseudo-
code used while producing logical models. Pseudo-code does prevent the
ambiguities possible with plain natural language. There's no standardized
pseudo-code notation so PRAXEME proposes one, but any other formalized
notation would do the job.

17

18

The usual top-down hierarchical and functional decomposition can only replicate
i t l diinternal divorces.

PRAXEME models the semantic and pragmatic aspects (objects, state machines,
constraints, use cases) and then derives the processes (except for pure organisational
aspects, they are NOT modelled from interviews and the existing flow of works), and
then can propose a new organisation, or support the existing one with much more
coherence and agility.

Yes indeed, the above diagrams are much simplified and one can notably argue that in
object-oriented modelling, logic and data are tightly associated by principle; so, why do
we have two boxes above? we have two boxes, because we roughly illustrate the order
of building the variant representations of these two aspects of the same 'objects'.

The 'curve of the sun' is explained later on…

19

Starting or preparing a SOA initiative with an exhaustive study of all the enterprise processes is a
mistakemistake.

The Process/Activity approach is obviously (and intuitively) incomplete if it is not accompanied by
a precise analysis of the objects of the business. Indeed, while modelling activities, references are
obviously made to objects from the business domain and therefore some modelling of the data
used by activities will ensue, somehow following the references from Activities to Objects.
This way of discovering objects mixes objects of all kinds: some that support operations, some
that model the domain; and the notion of state is generally completely overlooked, being degraded
into combinations of object’s attribute values.
Moreover, activities are penalized by local variations, cultural differences between organizational
entities, bias dependent from the actors, redundancy, and a rapid pace of change. Architects will
run after it: trying to keep their models in line with what’s really happening.
Activities are not the right candidates to serve as foundations. Their instability raises a big risk
when it's time to change things at any level.

Whereas it is obviously true that Activities are supported by data objects, the belief that
References from these Activities to data could provide the path to data models is actually wrong.
The idea of PRAXEME is to dissociate first two brands of Objects: Pragmatic ones (that directly
support activities for the lifetime of the activity) and Semantic ones (that persist the state of the
business). PRAXEME further demonstrates that a significant number of activities can be derived
from semantic objects; precisely, from the state machines of semantic objects. It does mean that
we reverse the design path from Objects towards Activities for all semantic objects, whereas the
pragmatic objects are still discovered from the Activities themselves.

Semantic objects and the associated state machines are hooked to the ‘universe of discourse’.
Consequently, they provide a very strong and stable starting point.

20

Shall we then believe that, with the above semantic and pragmatic categories, we have captured
everything into models (processes and data) and can start making implementation specifications y g (p) g p p
by mapping those artefacts onto an architecture?
Actually no!
Another major aspect of PRAXEME is the introduction of a third model: the Logical Model. This
model is still independent from implementation, and definitely not a luxury. It is actually the point
where Services are casted, not by rules of thumb, but by derivation. And who would dare
pretending that Services shall be dependent from the implementation?

The Logical Model is the Corner stone between abstraction and implementation. It is an essential
transition point between analysts and developers. It is the cradle of Services, which could become
Web Services in relevant technical infrastructures, but not only.

Pragmatic Models partly derive from Semantic Models, and the Logical Model derives from both
the Pragmatic and Semantic Models. All these derivations are ruled by procedures, which are
the essence of PRAXEME.

The logical model is itself structured in order to trace the derivations between models while
respecting a “separation of concerns”. Hence the structural elements called stratums to avoid the
too often used terms like “layer” or “block”.

Although independent from any implementation, and although derived from other models, the
logical model offers numerous degrees (or we could say dimensions) of flexibility. It is a playfield
for architects who could adopt various styles for organizing the bits of the model. That is the
point where an important decision is made: SOA is one architectural style that can be used
for the logical aspect. It is only a style and therefore is not implicit even if this is obviously the
style of choice at this time. Other architecture styles that could be used to build the logical models
include: EDA (Event Driven Architecture), Functional approach (the classical one), Agent or
Multiple Agents approaches, etc... But it is true that the only style that has been fully explored and
documented in PRAXEME is actually the SOA style.

21

Being a precise documentation of the business domain, a semantic model has a lot of
added al e B t there is more b appl ing deri ation r les it is transformed into thoseadded value. But there is more: by applying derivation rules it is transformed into those
other models that help building up the system.

There are four derivation paths:
- Derivation of the Pragmatic Model (see later) Significant parts are derived by
inversing the state machines of semantic objects. The result is the base for process
models, enriched with actors and organizational constraints derived from pre-modelling
activities.
- Derivation of the Logical Aspect (see later) which is actually derived from both the
pragmatic and semantic models.

o Service Models derive from the semantic aspect (according to an architectural
style that, as a strategic decision, can be the SOA style). Services are not discovered by
an intuitive process based on personal skills and knowledge but rather analytically
deduced from previous modelling works. This reduces the risk of creating services which
evolutions will reveal as non-reusable. The procedure also highlights governance
principles about versions, variants, contexts and so forth.

o Flow Models derive from semantic models, in particular about state machine
transitions.

o Data Models derive from semantic models, quite obviously. Logical Data Models
(something close to the classical Conceptual Models) in a relational form (a style) simply
derive from an application of normal form rules.

22

Obviously, DERIVATION replaces all the guessing and approximate work behind the
application of empirical design rules by logical (almost calculated) designs that reflectapplication of empirical design rules, by logical (almost calculated) designs that reflect
the fundamentals of the business and separate clearly those elements that derive from
the division of labour in a particular enterprise (the Organization).

Web services are, by the same token, derived from higher level models. There's no
guessing about which (Web) Services would maximize future reuse and agility! With
PRAXEME, they just have to be 'like that' and then agility and reuse will naturally follow!

Of course, there's still a lot of room for different groupings or artefacts, different styles,
slightly variant domain boundaries, coarser or thinner sets, and many optimization
decisions to take through the creation of 'variants'. The role of designers is far from being
extinct!

Of course too there is a lot of existing systems with which to interact and that may not
possibly offer the Services derived by PRAXEME; and that is too well managed through
additional implementation ‘variants’.

By the same token, the Organizational aspect is a field of great freedom in the way to
organize the business, but such flexibility is very clearly framed inside semantical fences
that, at the same time, limit the freedom and show the improvement paths.

The schema that is represented illustrates additional derivation paths with regard to the
previous figure. But it is yet unstructured. PRAXEME will organize all these blocks into a
framework that is named the Enterprise System Topology (E.S.T.). The EST defines
the PROcess-side of PRAXEME with regard to the PRO3 reference model for an
enterprise methodology.

23

The implementation of systems designed emphasises the importance of meta-data. Actually,
PRAXEME d t t th t th fl ibilit d bj ti t d f iPRAXEME demonstrates that the flexibility and re-use objectives expected from a service-
oriented approach are hardly achieved without suitable tools for managing parameters and rules
that enable the creation of variants and versions.

PRAXEME and TOGAF:

The production of reference models in PRAXEME (that capture the semantic, pragmatic,
geographic and logical aspects) is definitely an element of the Enterprise Continuum of TOGAF
(covering several architecture domains of TOGAF, with products mostly in the Solutions
Continuum), whereas PRAXEME itself like pre-built models available from the industry (MDA,
SCOR, Telecom FORUM, REA, ...) shall been see as members of the Resource Base.
However, PRAXEME doesn’t strictly follow the TOGAF ADM (Architecture Development Method)
and phasing. Most of the PRAXEME upstream aspects (Semantic, Pragmatic, Geographic) and
Logical Modelling altogether fit Phase C (Info Systems Architecture) , whereas selected
downstream aspects (Technical, Hardware, Physical) fit Phase D. The PRAXEME Software
models being much concerned with implementation mostly escape to the scope of TOGAF.

Referential data (actually meta-data) from the Semantic, Pragmatic and Logical aspects of
PRAXEME do conform with the general TOGAF philosophy for maintaining architecture reference
models that are re-used and maintained. However, PRAXEME is more precise in producing also
detailed parameter sets, rules and configuration objects that will drive the flexibility of any future
implementation. Yet, such implementation aspects escape by essence to the scope of TOGAF.

24

This is the point where one can look back and SITAF, the Sustainable IT Architecture
F k d ibl b i t d t d th d i f t l i SITAFFramework, and possibly begin to understand the dominance of meta layers in SITAF.

Basically, the key to flexibility is clearly to drive operations with meta-data telling what to
do at what point in time (rules and processes), what is valid or invalid (rules), and how
things actually take place (system/services interactions are managed, and versioned,
and declined in variants, with the help of parameters, themselves stored in a MDM
system). All such parameters and meta-data actually constitute a referential that drives
the business; hence the opportunity—and actual need—for governance about who
decides how the system shall behave; in other words, who can modify the referential.
Understanding what parameter, what rule, and what piece of meta-data drives what
element from the system is supplied by the logical model, itself hooked to the ‘reality’
that describes the business itself, so that the link between referential data and the
business reality is clear.
That is roughly the idea behind SITAF.

A consequence of possibly adopting SITAF is the requirement for original modelling and
development environments capable of industrializing the execution of the method, and a
new class of Unified Platform for the Development of Services (UPDS) that
emphasize the role of BRMS (Business Rule Management System), BPM (Business
Process Management), and MDM (Master Data Management), the later being at least
dedicated to manage referential data in the first place and would be properly called
Referential Data Management.

A Virtual Engine for PRAXEME (VEP) has been created that provides a possible
implementation base for logical components. The VEP provides a framework inside
which are plugged the BRMS, BPM, and MBM facilities. The purpose of the VEP is
about forming a code-base so that the generation of code from the logical models is
facilitated. No ‘PRAXEME’ framework is available off-the-shelf at this date from any
vendor but all software components are available in the market and a UPDS can be
assembled for a limited integration effort. 25

PRAXEME is indeed a software development method. In contexts dominated by the
d l t d fi ti f k th l f PRAXEME hift t thdeployment and configuration of packages, the value of PRAXEME shifts to the
assessment of packages and modules with regard to reference models (themselves
traced back to business requirements, and help in driving configuration towards the most
stable set of services that will best serve integration requirements.

26

27

The EST (Enterprise System Topology) illustrates the PRAXEME methodological
It 9 t (thi k d lli i b t th t ' t' fit b tt) lprocess. It covers 9 aspects (think modelling views, but the term 'aspect' fits better) plus

a pre-modelling/scoping activity. The diagram shows the dependencies between all
these aspects.

28

The diagram is like an UML package diagram, except for the Scoping (or Pre-
M d lli) b hi h fl t i f t f th ESTModelling) box which floats in front of the EST.

The EST formalizes the structure of the enterprise representation. It defines the
boxes – i.e. the types of representations – where to record the information we
need to capture, and the decisions we have to make regarding every aspects of
the enterprise.

Colors convey 2 ideas. Upstream aspects, Logical aspect and Downstream
aspects adopt related tints to show this high level grouping. The Technical aspect
adopt the gray to show its different position and the special links with other
aspects. Another reading exists: the colors cover the complete spectrum,
meaning that with the 8 aspects, the structure covers the whole enterprise.

Arrows are dependency relations. They mean « Depends upon » or « Refers
to » or « Uses ». In some cases they also have a more precise sense of « Is
derived from ».

Relations are oriented (they are UML dependency relations) which means that
reverse relations do not exist. This is important because those non existing
relations are therefore forbidden. This preserves the separation of concerns and
avoid dependency loops that would be impossible to manage in a design
process.

29

This is a representation of what each 'arrow' means. It is critical to note the
th t t t d Th t i i b t l l l iarrows that are not represented. They are not missing but clearly claim an

absence of dependencies between the relevant aspects.

People often note that the Technical aspect itself depends from nothing, just like
pre-modelling/scoping. True, the Technical aspect will capture technical
constraints that do not depend from any of the illustrated aspects. Yet, it does
depend from constraints like 'non-stop operation' requirements, asset protection
requirements (security), performance and storage requirements themselves
possibly dependent from archiving policies, targeted response time, number of
connected users, the distribution or centralization of computing resources, facility
management opportunities, expertise of the operations team, re-use of existing
equipment, and the like.

It does not depend from the geographic aspect either, because geography, and
the means to equip each site, will translate into technical requirements for
supporting multiple sites or only a central one, making sites autonomous or not in
case of network failures, and so forth.

30

Traceability map: models have relationships between each other. These
l ti hi ti li d ith th ti f I D i t d F hi hrelationships are rationalized with the semantics of «Is Derivated From» which

means that when looking to some parts of a model we know precisely from what
part of the source model it comes from. Obviously the derivation procedures
guarantee that every part of a source model is mapped onto a precise part of the
target model. Hence the traceability.

31

This representation gives a good view of what the logical aspect is, between upstream
aspects describing the b siness and do nstream aspects describing the sol tionaspects describing the business and downstream aspects describing the solution
designed.

The logical aspect is a decoupling apparatus between upstream and downstream
aspects.

Upstream Aspects
• Represent the core business knowledge and the way to do it
• Do not include IT considerations
• Keep strict links with Scoping
• Is stable compared to IT representations

Logical Aspect
• Represents a decoupling structure between Business and IT systems
• Regardless of technical choices
• Is modelled with an architecture style

SOA is such a style
Downstream Aspects

• Represent the IT solutions to be delivered
• Includes all means to deliver the solutions
• IT operations are located here
• Technical agility lives here

When comparing PRAXEME aspects with the classical conceptual, logical and physical modelling
views, the Semantic and Pragmatic aspects belong to the Conceptual view, the Logical aspect
conforms with the Logical view that is still implementation-independent by nature, and the
Software aspect fills the physical view.

32

The Upstream Aspects represent fundamental business knowledge. Together they
d t h t th b i i h it i d h t th l t i t l ddocument what the business is, how it is done, what are the rules, constraints, goals and
wishes, and all events that matter to the business.
They do not include technical details, not even architectures of a particular system which
would be a mapping of business descriptions. Upstream aspects clearly describe an
enterprise information system. The Upstream Aspects relate to the Computation
Independent Model in MDA (CIM).

The Semantic Aspect:
Captures the being of reality

• In terms of objects and applying an Object Oriented Approach
• All the being without technical or organizational details

Does not describe
• Actors and organizational details
• Actions on objects (Processes and use cases)
• Know-how and recipes on how to deal with business

Does describe
• Real life objects with their information and relations
• Object Statuses representing the object transformations
• Pure Business Rules (règles de gestion)

From the business domain reality
From external constraints like regulations, standards
Enforced rules that can not be avoided

33

The LOGICAL aspect is still completely independent from any implementation
h i d t h lchoice and technology.

Upstream Aspects relate to business domain. Downstream Aspects relate to
technologies. This easy to understand. In between, the Logical Aspect is probably
more difficult to grasp because it is not fitting either side. But it is fundamental as
the decoupling layer between the two. It's role is precisely to reconcile the very
different life cycles on both sides. Not designed by pure business concerns, and
neither a collection of technologies, it establishes the structural rules and
architectural style used to transform upstream models into downstream models,
or, in other words, to get from the business strategy (the information system) to
the implementation strategy (the IT system).

34

According to the Service Oriented approach, the Pragmatic and Semantic models are mapped
into the Logical aspect comprising three levels: Machines, Workshops, and Factories. These threeinto the Logical aspect comprising three levels: Machines, Workshops, and Factories. These three
levels appears both within the Foundation (Business) stratum and the Organizational Stratum.

The derivation of the each Semantic object yields a Main machine, a Collection-Accessor
machine, and a Data Structure. Additional machines can implement complex or composite
operations, else orchestrate diverse services such as to improve the management of inter-
dependencies. Machines are grouped in Workshops by ‘affinity’ to the same business concept,
and such as to minimize interactions between workshops.

Workshops on the foundation (business) side are then grouped into business domains at the
‘factory’ level.

The derivation of Pragmatic models yields one organizational machine per use case, along with a
pair of Collection-Accessor machine and Main machine for each administrative object. There are
also additional machines derived from parent use-cases and processes. Machines are then
grouped by functional domain (reflecting the entire organization and governance) into Workshops.
All the organizational workshops are then found inside one single Factory that is the entire
organization itself.

Each machine follows an imposed structure with pre-conditions, logic and post-conditions also
derived from the models (conditions in state diagrams, organizational and business rules, etc.)

Services are elsewhere inside machines (private services), at the interface to machines and at the
interface to workshops. Most of the services are actually derived fro the models.

While the Logical model is built, existing application packages and software components are
injected at the machine, workshop, or even foundation-factory level.

The Logical model that ensue shall then be mapped into a Software model. This will be a main
source of variants (not to mix with versions!) allowing various service optimizations (like reduction
of data structures, compensation, composition, or splitting needed to interface existing systems,
etc.)

35

Downstream aspects are turned toward the IT system. We will finally have to deal
ith t h l i d t h i l t i t t b ild th fi l twith technologies and technical constraints to build the final system.

The MDA (Model Driven Architecture, OMG) approach is much relevant this
stage.

The life cycle of the infrastructure (with all execution artefacts) on the one hand,
and of business objects on the other hand, do exhibit quite different timescales
and requirements. Serviceability, continuity, support, contracts, and maintenance
do not bear the same meaning on either side.

It is therefore compulsory to isolate the upstream and downstream concerns such
as to prevent conflicts in life cycle management, hence the role of Logical
Modelling. To that respect, it is important to understand that Logical Modelling
(according to its dependency from the Technical aspect!) must be preceded by a
Technical-Logical negotiation step, whereby important decisions about the
future architectural style and software artefacts are taken and will influence the
derivation of the Logical models from upstream aspects in order to facilitate the
next derivation from Logical Models to Software.

36

It shall now be clear the dependencies illustrated in the Enterprise System Topology do
i ld f i l l i l P (f PRO3 h th f l i d d iyield a fairly logical Process (cfr PRO3 scheme, the sequence of analysis and design

activities) for the execution of PRAXEME.

However, when considering the application of PRAXEME to one or several functional
domains with varying scope and constraints from existing systems, one can easily create
a few parallel threads of progress through the methodology, providing much room to
organize the works in different sequences, or even iterations.

37

38

The previous figure can suggest that PRAXEME could only scope the whole Enterprise
d ll t t th ti Thi ld b i ti PRAXEME dand all systems at the same time. This would be a miss-conception. PRAXEME does

allow incremental delivery; PRAXEME does allow integrating existing systems.
PRAXEME actually does much better on these two fronts notably because of the
separation of semantic and pragmatic aspects that provide much visibility to actual
compromises and thus allow driving better, informed, decisions at a level of vision higher
than the usual 'improvement guess-works'.

39

Existing software applications are modeled in PRAXEME as workshops, or even factories.
Semantic and Pragmatic modeling must encompass (to some degree) the domains covered bySemantic and Pragmatic modeling must encompass (to some degree) the domains covered by
the existing components/applications, in order to :
• keep control of the business (semantic) and organizational/operational (pragmatic) knowledge;
• assess the constraints imposed by existing packages

Questions relating to the integration of existing packages:

At the level of Logical Architecture
Business: Does the software package cover one or several domains of business objects?
Organizational: Does the software package cover one or several functional domains?
Can we use only useful domains of the software package or not?

How agility chain is taken account by the existing package with BRMS, MDM and BPM
components or the like?

Do these IT components exist? Are they reusable beyond software package’s boundaries?
How can we manage variants and versions onto existing systems?

40

41

