
Praxeme Institute

Reference : PxM02en-gGen.docx Version : 1.99.1 Date : 27 November 2010  info@praxeme.org

Praxeme Institute  21, chemin des Sapins – 93160 NOISY-LE-GRAND – France +33 (0)6 77 62 31 75

Guide

PxM-02en

“Modus: the methodology Praxeme”

 General Guide

This document lays down the foundations of Praxeme, an enterprise methodology.

It addresses those who are interested in, who appraise and develop enterprises and

their IT assets. It presents the basic principles and concepts that structure this open

method.

 The foundation: “The structuring principles”, “The notion of “service””

 The products

 The processes

 Modeling guidelines

Dominique VAUQUIER

Carolin CHAI, Nigel STRANG, Dominique VAUQUIER, Joanne TOWARD

1.99.1, 27 November 2010

Objective

Contents

Author

Translators

Version

Modus: the methodology Praxeme

ii Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Configuration Elements

The position of this module in the methodology

The methodology Praxeme is based on and structured by the “aspects” and the

Enterprise System Topology. The general guide (PxM-02) explains this approach.

PxM-41 is an addition to the guide for the logical aspect (PxM-40).

 Figure PxM-02en_1. Structure of the Praxeme corpus in the “Product” dimension

The Praxeme methodology results from the initiative for an open method. The main

participants are the enterprises SAGEM and SMABTP, and the French army1. They

combined their forces to found a public „open‟ method. The Praxeme Institute maintains and develops this joint

asset.

Any suggestions or change requests are welcome (please address them to the author).

This document is available on the Praxeme website and can be used if the

conditions defined on the next page are respected. The sources (documents and

figures) are available on demand.

1 See the website, www.praxeme.org, for the entire list of contributors.

Situation in the
documentation

Owner

Availability

http://www.praxeme.org/

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
iii

Configuration Elements

Revision History

Version Date Author Comment

 March 2004 DVAU First Writing (Dromos: method Sagem for enterprise

architecture of the UAV2 system)

 November

2005

DVAU Extended version (Amos: the SMABTP method; SOA

approach)

1.0 27 April 2006 DVAU Generalized for submission to the first “Circle of experts”,

launching the Praxeme Institute

1.1 3 July 06 Reviewed by the Circle of Experts Praxeme (see list below)

1.2 Carolin CHAI

Nigel STRANG

Translation

1.99.# October 2009

November

2010

DVAU

Joanne

TOWARD

Review of the translation

1.99.1 Current version of the document

The French version of this document has been reviewed by: Guy BOISSARD (Conix Consulting), Pierre

BONNET (Orchestra Networks), Antoine CLAVE (Fidelis), Philippe DESFRAY (Softeam), Fabien VILLARD

(Praxeme Institute).

2 Unmanned Air Vehicle.

Modus: the methodology Praxeme

iv Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

License

Conditions for using and distributing this material

This document is protected by a “Creative Commons” license, as described below.

The term “creation” is applied to the document itself. The original author is:

 Dominique VAUQUIER, for the document;

 The association Praxeme Institute, for the entire methodology Praxeme.

We ask you to name one or the other, when you use a direct quotation or when you refer to the general

principles of the methodology Praxeme.

This page is also available in the following languages :
български Català Dansk Deutsch English English (CA) English (GB) Castellano Castellano (AR) Español (CL) Castellano (MX) Euskara Suomeksi

français français (CA) Galego עברית hrvatski Magyar Italiano 日本語 한국어 Melayu Nederlands polski Português svenska slovenski jezik 简体中文 華語

(台灣)

Attribution-ShareAlike 2.0 France

You are free:

 to copy, distribute, display, and perform the work

 to make derivative works

 to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the
manner specified by the author or licensor.
.

Share Alike. If you alter, transform, or build upon this
work, you may distribute the resulting work only under
a license identical to this one.

 For any reuse or distribution, you must make clear to others the license terms of this work.

 Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Rights and
responsibilities

http://creativecommons.org/licenses/by-sa/2.0/fr/deed.bg
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.ca
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.da
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.de
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en_CA
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en_GB
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.es
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.es_AR
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.es_CL
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.es_MX
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.eu
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.fi
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.fr
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.fr_CA
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.gl
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.he
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.hr
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.hu
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.it
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.ja
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.ko
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.ms
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.nl
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.pl
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.pt
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.se
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.sl
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.zh
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.zh_TW
http://creativecommons.org/licenses/by-sa/2.0/fr/deed.zh_TW
http://creativecommons.org/licenses/by-sa/2.0/fr/legalcode

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
v

Content

Configuration Elements .. ii
The position of this module in the methodology ii
Revision History iii
Conditions for using and distributing this material iv

Introduction .. 1
A new method for new concerns 1
The three dimensions of the methodology: Product, Process, Procedures 2

Foundations .. 3
Construct practice on a solid base 3
The Enterprise System Topology 4
The definition of aspects 5
The order of the examination of the aspects 6
The relations between aspects of the system 7
The Topology in intaglio: explanation of omissions 8
The role of the logical aspect 9
The notion of “service” 11
The transformation chain 12

The products ... 13
General terms 13
The semantic model: concentrate on fundamentals to reveal the stable core 14
The pragmatic model: express the –local– need and guarantee –global– consistency 15
The pragmatic model: how to innovate processes 16
The pragmatic model: the terms 17
The logical model: building sustainable structures 18
The logical model: a language of its own 19
The logical model: the stratification of the system 20
The elaboration of service architecture 21
The system covered by the models and viewpoints 22
The deliverables 23

The process .. 24
Implementing the topology 24
Modeling: between analysis and design 25
Pre-modeling: facilitates the transition 26
The target levels 27
The approach: possible actions in parallel 28
The approach: work on architecture 29
The activities of the overall scope 30
Enterprise Architecture and IS urbanization 31

Modeling Procedures & Methods .. 33
Portraying before doing 33
Semantic modeling: going straight to essentials in order to isolate the stable core 34
Semantic modeling: some precepts 35
Business Process Modeling (BPM) 36
Analyzing requirements via the Use Cases 37
Logical architecture 38
Identifying logical services 39
The documentation of logical services 40
Technical architecture 41

Modus: the methodology Praxeme

vi Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

“Theory without practice is mere intellectual play but practice without theory is

blind.”

Immanuel Kant

Epigraph

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
1

Introduction

A new method for new concerns

Obliged to adapt constantly, enterprises must make the most of new technologies,

while unleashing their potential for innovation in terms of expertise and organization. The principal obstacle

they encounter is the promotion of synergy between experts who find it hard to interact and to acknowledge

each other. Sharing a common framework that represents and interconnects their skills is a necessary condition

to surmount this obstacle

Praxeme is an enterprise methodology that aims to provide such a common

framework. The system topology, described here, is its theoretical foundation.

Praxeme also contains the processes that guide how to approach specific aspects of

a system, without losing sight of the global coherent view.

The most developed axis in Praxeme currently concerns information systems. These

systems, known to be complex, are at the heart of the economic battle. However,

this complexity, coupled with the disorder found within specialties, considerably

decreases the possibilities of optimization and increases costs and uncertainties.

Praxeme has been built, principally, to help CIOs meet their new challenges. It builds on currents such as the

object-orientated approach, Service Orientated Architecture (SOA) and the standard, “Model Driven

Architecture” (MDA). Praxeme uses and provides a guide for the use of the standard notation UML (The

Unified Modeling Language).

This document provides an overview of the framework. It explains the foundations

of the approach and justifies the different methods and products.

The “General Guide” defines the principles that structure the framework. It considers needs and circumstances.

It does not cover the entire methodology, but provides an introduction to it. Other documents focus on specific

procedures and types of product (the forms, notably).

The first part of the guide defines the principles. These are then developed through

the three dimensions of the methodology:

1. Product (what needs to be produced, the deliverables),

2. Process (how to be organized to produce),

3. Procedure (how to work concretely).

In the third part, we focus on modeling procedures.

Apart from the guide to the different “Aspects” (illustrated by figure p. iii), a

complete set of commented examples completes the general guide. Its reference is

“PxM-02x”.

The situation
General situation

An enterprise
methodology

To control
information

systems

The objectives

The content

Related Documents

Modus: the methodology Praxeme

2 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Introduction

The three dimensions of the methodology: Product, Process, Procedures

Figure PxM-02en_2. Structure of the document

The document presents a selection of procedures in the order of the methodology:

 Semantic modeling, from the preliminary to the identification of high-value

services

 System specification based on use cases.

 Logical architecture.

 The design of services.

Information on the
procedures

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
3

Foundations

Construct practice on a solid base

Enterprises and information systems are complex objects calling on many forms of

expertise. It will only become possible to guide intervention on these objects, once a

theoretical framework has been defined that fixes the relative contribution of the various forms of expertise.

 An initial question springs up: “What needs to be represented, for us to be able

to intervene on the system?”. Praxeme answers this question with the Enterprise

System Topology , an inventory of the aspects of the system.

 The principle of the separation of concerns structures the approach to the system: it separates the different

models and conditions the transformation process.

 Among the identified aspects, the logical aspect is particularly important from the perspective of service

orientated and enterprise architecture.

 Praxeme gives particular attention to the notion of service, the elementary constituent of the information

system and vector of exchange with related systems.

The following pages explore these principles.

The Enterprise System Topology continues the tradition of software engineering:

 It inherits the notion of abstraction levels from Merise and methods in the

80s.

 It is inspired by enterprise architecture approaches such as the Zachman‟s framework.

 It updates these legacies in accordance with the standard “MDA” (Model Driven Architecture, standard of

the OMG3). MDA proposes the modeling principle that some models are independent of technology, and

some are dependent on technology (PIM: Platform Independent Model and PSM: Platform Specific Model).

3 The Object Management Group (OMG) gathers many of the actors in the field of software industry and engineering. It

publishes standards among which the most famous are CORBA (Common Object Request Broker Architecture) and UML

(Unified Modeling Language).

Motivation

The structuring
principles

“What needs to be
represented?”

Modus: the methodology Praxeme

4 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Foundations (cont.)

The Enterprise System Topology

Once it has been understood that modeling is an indispensable preliminary to the

design of complex systems and that models are one of the factors enabling the

intellectual control of enterprises and information systems, the question is: what exactly needs to be modeled?

UML as a notation standard does not answer this question of methodology.

Failure to address the question “What needs to be modeled?” exposes projects and transformations to major risk,

and in all cases leads to a significant waste of resources.

The proposed response consists in establishing the inventory of the aspects of the

targeted reality (the enterprise in this case) that need to be examined to describe it,

pertinently and exhaustively. These aspects are rigorously articulated in the “Enterprise System Topology”

(EST) which forms the theoretical basis of Praxeme.

The essence of the targeted reality must be correctly grasped in order to be able to design the new organizations,

processes or IT solutions that will provide the tools needed to support it.

The term “topology” has been chosen to evoke the idea of “place” (in ancient Greek: topos). The Topology

defines the places where we manage and stock information and decisions acting upon the system.

The illustration below summarizes the Enterprise System Topology. A justification of this structure can be

found in the appendix (Please see the appendix).

Figure PxM-02en_3. Framework of the Enterprise System Topology

The problem

The solution

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
5

Foundations (cont.)

The definition of aspects

Enterprise architects intervene on systems dealing with complex realities. These

systems involve a large amount of information and issues of interest to diverse lines

of work. It is simpler to master the complexity if the issues are divided by discipline

or specialty into separate homogeneous groups. These homogeneous groups form the “aspects” of Praxeme.

Isolating aspects helps to master the description of and facilitate the evolution of the system.

An aspect is a view of the system. The system is considered from the perspective of

a particular preoccupation. So, although an aspect is a component of the system, it is relative not absolute: it is

linked to a point of view, to a particular preoccupation, to a specialization. Some aspects have nothing to do

with IT (Information Technology).

The table below defines the eight aspects retained for the Topology. (Please see the appendix for the

justification.)

Figure PxM-02en_4. The definition of the aspects of an Enterprise System

Aspect Equivalent Terms Definitions

Semantic Conceptual,

essential, “The

Key Business ”

The semantic aspect describes the objects at the heart of the

business. It describes the fundamental core independently of how

the business is done.

Pragmatic Organizational The pragmatic aspect regroups the different choices as to how

business is done: the actors, the responsibilities, the actions on

objects, the processes and the work situations.

Geographic “Communication”,

“Situation”

The geographic aspect records the physical location of objects and

actions. Here the notions of sites, locations, and communication

needs appear.

Logical “Functional” This intermediate aspect allows the expression of important

decisions that structure the information system, with relative

independence from technical issues.

Technical Technological The technical aspect describes the choice of technologies and their

implementation.

Hardware Logistics The hardware aspect describes the physical machines that make up

the system, and their characteristics (capacity …).

Software Application, IT The software aspect describes the software components which

automate some of the actions of the Information System.

Physical Deployment The physical aspect describes the hosting of software components

(databases included) on the IT infrastructure.

Isolating the
aspects

Aspect

Modus: the methodology Praxeme

6 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Foundations (cont.)

The order of the examination of the aspects

Collecting information following a rigorous set of ordered steps during the design

phase is good practice with the following advantages:

 Productivity due to a strict sequencing of the work and the issues to consider.

 Better use of models and documentation: each model has its own life cycle (the semantic model is very

stable and will serve as a long-term reference; the logical model is independent of the technical architecture

and does not change when technology changes, etc.).

The following table illustrates the aspects proposed by the topology.

Figure PxM-02en_5. Illustration of aspects

Aspects Examples Principal
categories of

representation

Comments

Semantic Products, Contracts, loss,

Articles (Insured article or

assets)

Classes, state

machines

The semantic model captures and

formalizes the business

foundation. Very stable.

Pragmatic Actor, partner,

organizational rules , User

profiles, “Submit a claim”,

“Order a product”

Actors, Use Cases,

Process

The practices and organization

rules are isolated. They can be

changed more easily.

Geographic Headquarters, regional

branches, agencies, offices,

overseas, nomadic access

Type of sites,

networks (non IT)

The geographic model describes

the underlying assumptions and

constraints of physical sites.

Logical “domains”, common

resources, “Structures”,

“blocks, districts, areas…”

Logical machines,

logical services

This facilitates decisions about

the structure of the system.

Technical Data Support, middleware,

technical components,

languages…

Technical choices,

frameworks

The technical architecture

explains how to derive software

from the logical description for a

given target system.

Hardware Machines, processors,

connectivity, networks

“Nodes” and

connectivity

Software Software

components,

applications

Software components are

obtained by combining logical

units and technical choices.

Physical Software

components and

equipment

The software components are

located on the IT infrastructure of

the physical IT architecture.

Motivation

Examples

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
7

Foundations (cont.)

The relations between aspects of the system

The links between aspects in the Enterprise System Topology indicate the

transitions between aspects. These links indicate dependencies between the aspects.

Models must be articulated in order to be able to sequence work. The following paragraphs justify the links

represented by the dotted arrows in the figure on page 4.

Actions affect fundamental (real or conceptual) objects. In consequence, the

pragmatic model (describing actors and their actions) refers to the semantic model

which describes these fundamental core objects.

Different types of location are typed according to the kinds of actors and their

responsibilities. If a regional branch exists it is because certain types of

responsibility are located there.

The terms of the logical model come from the transposition, guided by structural

decisions and rules, of the semantic and pragmatic descriptions. This point will be

described in detail later on.

This association allows the description of the physical location of hardware. This

description is completed with quantitative and qualitative elements.

Either can be chosen in function of the other. The topology chooses to give

precedence to the hardware architecture as it has more constraints. Even if the

reasoning is done the other way around, it is the dependencies determined by the

topology that will be documented.

All software components, whatever their dimensions, are the expression of the

implementation, in a given technical architecture, of an identified logical

component.

The software production chain culminates in the physical aspect. This last step

consists of implementing software components on the appropriate hardware.

This articulation of aspects shows how the information, representations and

decisions form a continuous sequential chain from one end of the software

production cycle to the other.

The relations between the aspects summarize the dependencies on and references to the most finely detailed

model elements.

It is possible to define derivation rules for these relations, which identify how to pass, sometimes automatically,

from one aspect to another. For example, an operation defined in a class of the semantic model becomes a

“logical service”, after a few changes to its signature (its interface) in the logical aspect.

The associations

Link from the
pragmatic aspect

to the semantic
aspect

Link from the
geographic to the

pragmatic

Link from the
logical to the
semantic and

pragmatic

From hardware to
geographic

Link from
technical to

hardware

Link from
software to logical

and technical

Link from physical
to hardware and

software

The importance of
the relations

Modus: the methodology Praxeme

8 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Foundations (cont.)

The Topology in intaglio: explanation of omissions

The Topology provides a schema of principles that organize the information and

decisions concerning the Enterprise System. It has been elaborated over numerous

experimentations where we have sought the most efficient organization with:

 Neither too many aspects, to avoid complications and a proliferation of models;

 Nor too few, leading to overlapping responsibilities and a confusion of roles.

This also holds for relations between aspects. Adding relations increases coupling and the likelihood of

confusion and complication.

The Topology framework should therefore be read taking into account its omissions that is to say: the things

that are not shown are just as important as those that are.

So, for example, the Topology does not indicate a relation between the logical

aspect and the technical aspect. This absence – consciously willed and affirmed –

expresses the principle of logical independence, which states that the operational description of an IT system is

independent of technology. This independence guarantees the sustainability of the logical model and so it

becomes economically interesting to invest in the development and administration of extensive logical

descriptions. This leads to the procedures and dispositions that we implement for the logical aspect. The logical

aspect is, equally, unaffected by the geographical configuration of the system..

The place of the technical aspect does not raise any difficulties: software is

understood to be the expression of logical specifications in the chosen technology.

However, the status of the technical aspect as a whole is questioned. Technical

architecture addresses two types of element: specific software components and development rules. The first of

these, specific software components, are included in the logical aspect. The second, development rules

(potentially automated) lie on the path that leads from the logical aspect to the software aspect. As a

consequence it could be theoretically acceptable to include the technical “pseudo-aspect” in the software aspect

and as rules of transition between the logical and software aspects.

However, the technical aspect has been conserved in the Topology due to both the symbolic and political weight

of technical architects in IT departments. In addition, it facilitates the management of multiple architectural

scenarios on a practical level.

It is very tempting to adapt the Topology, either to seemingly simplify it or to

enrich it. However its internal coherence must be respected. One way of respecting

the theoretical structure, while adapting it for use, is to regroup several aspects

within a single deliverable (see p. 22).

In search of
efficiency

Logical / technical

The technical
aspect

The adaptation of
the Topology

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
9

Foundations (cont.)

The role of the logical aspect

Due to its role as an intermediary and the arbitrary nature of its representation, it is

very difficult to define the position of the “logical” aspect.

The logical aspect lies between :

 The “external view”: the business world of domain objects and actors of the business system.

 The IT system (technical choices, software components, deployment).

This intermediate level is inserted to facilitate structural decisions about the IT system.

The library metaphor (explained in detail on the following page) illustrates the objective of logical architecture

and the type of questions treated by this aspect.

The logical aspect does not exist in isolation. It only has value as an intermediary

between the external view (aspects: business core, organization and geography) and

the internal view (IT system). It bridges the IT system with the reality. It is often

expressed in terms of metaphors, for example:

 City planning or “Urbanization”, where the IT system is compared to a city in need of organization.

 “Service”, where the system is seen as a set of elementary responses to requests.

The logical aspect can lead to two types of intervention depending on whether the

scope is system wide (global) or limited to the application (local).

The logical architecture is the primary description of the IT system. It is represented

by an architectural graph that prefigures the future system and directs the evolution.

The logical architecture is the referential description of all the information of the

logical layer and should be provided to the developers.

Logical design also applies to applications. On the one hand, designers explore the

logical architecture to identify services provided and used by the application. On the other hand, the developer,

faced with new requirements, gives feedback that consolidates and enhances the logical architecture.

An intermediate
reality

The place of the
logical aspect

The reach

Logical
architecture

Logical design

Modus: the methodology Praxeme

10 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

What is logical design? – The library metaphor

Let us consider a library. Optimizing the organization of its contents and facilitating its use would begin by a

study of the library domain: the classification of subjects and themes, the analysis of relationships between

subject areas, authors, books and so forth. This semantic analysis would render a very cluttered model in which

everything would be related to everything else. The perception of this reality is essential even though it cannot

be directly implemented either in the library structure or in the information system. The model provides a point

of departure and an ideal target for the design process. It is produced by “Semantic” modeling.

The behavior of the library‟s clients would then be considered. What kinds of people visit the library? What are

they looking for, what do they need? How do they act? Some come with precise goals, others come to browse.

Some come with a very practical approach – to find everything concerning a precise topic – irrespective of the

subject area or the media. Others come with a more playful approach – for the love of books, the pleasure of

classified collections, etc. These issues are studied and modeled in the “Pragmatic” aspect.

The designer then needs to take into account the limits and possibilities imposed by the layout of the library: the

division between public and administrative areas, the number of floors, the communications systems and so

forth. These issues are addressed in the “Geographic” aspect.

The library also has “technical” characteristics. The library‟s equipment will have specifications that need to be

respected. The choice of styles and materials determines the lengths and widths of shelves. There will be

mechanical transport facilities and storage bays of book silos with optimal exploitation of space and so forth.

These issues are addressed in the “Technical” aspect.

Taking into account:

 the semantic model as the ideal: real for the reader but unattainable as a reality

 the behavior and expectations of the users

 the technical possibilities and the imposed choices

The architect will sketch out a plan to organize the library‟s contents. As much of the semantic proliferation and

pragmatic fluidity as possible will be expressed within the imposed technical limits. The consequences of design

decisions that arise from these limits will be clearly identified. The plan takes its origin in the major principles

and is then refined until it allows a librarian to know, without ambiguity, where any given book goes on the

shelves.

That is logical architecture.

Designers constantly have to decide amongst options. For each decision they clearly identify what is lost and

may try to lessen the consequences through additional options4.

4 For example, imagine that the classification of a book is ambiguous: either multiple copies of the book could be purchased

and cataloged multiple times or place markers could be placed on the shelves directing the reader to the appropriate and

alternative location.

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
11

Foundations (cont.)

The notion of “service”

The logical architect has the choice among several different styles and approaches

to logical architecture. For example: functional architecture breaks down the system

according to function; many architectural styles use systemic approaches; the

vocabulary sometimes draws on city planning terminology.

The architecture of an information system is said to be “A Service Architecture” or “Service Oriented” if

the system is structured around the elementary unit of logical services.

In a service-oriented architecture, no other visible components are smaller than the logical service: every

information need, each action or transformation is met by a service.

The importance of the notion of service is such that it needs to be defined from

three angles: what it is, what it does, what it will become.

The service is the lowest level constituent of the logical architecture.

Hence “Service Architecture”.

The service is the atom or elementary constituent of the logical construction of the system.

A service is the elementary response of the system to a request for information,

for an action or for a transformation.

This prohibits both direct data access and remote operations.

Logical services are the design units of logical architecture and are derived from the

preceding models (semantic and pragmatic).

They are implemented as software components in the chosen technology. The

software components are located on one or several machines and can be activated at

execution time.

This life cycle of the logical service directs the transformation chain, as shown schematically on the following

page.

The service-
oriented
architecture

The definition of a
logical service

What is a service?

What does a
service do?

Where does a
service come

from? What does
it become?

Modus: the methodology Praxeme

12 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Foundations (cont.)

The transformation chain

Figure PxM-02en_6. The lifecycle of a service, as regards to the topology aspects of the Enterprise System.

The logical services (they are counted in thousands) are combined into logical

groups with three levels of aggregation:

 “Logical machines” (represented by UML classes);

 “Logical workshops” (packages regrouping closely associated machines);

 “Logical factories” (packages corresponding to domains).

The nature of a logical service depends on its location (see following figure):

 Either in a “business logical machine” (BLM), at the core of the system (a BLM is derived from a semantic

class);

 Or in an “organization logical machine” (OLM), in an intermediate layer.

The products section explains these notions in more detail.

Service-oriented architecture permits increases in the quality of the system

structure, even in the absence of object oriented technologies. It leads to the

publication of software components as services, in a direct continuation of web services technologies. As such it

promotes open systems.

Related notions

The rationale

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
13

The products

General terms

Enterprise Architecture distinguishes between:

 Local objectives: the specific solution addresses a specific business issue of an

internal client (application, business process, business domain…).

 Global objectives, which involve the whole enterprise in the long-term.

Local objectives are characterized by the clear identification of requirements, a specific development and a short

time frame. Exactly the opposite applies to the global objectives. Whether local or global, the aspects of the

reality to be analyzed remain the same and the topology applies to both.

A model is a relevant representation of reality.

A software engineering model is made up of:

 Graphical representations (models in UML);

 Information about, and details of, model elements (definitions, descriptions, quantitative information);

 Eventual justifications of the chosen models.

Every development requires a model, prior to development.

There are many options, situated between two extremes, when modeling aspects:

 Each model develops a single aspect;

 A model develops all the aspects necessary to reply to a requirement.

Certain connected aspects could be mixed in the same deliverable.

The choice depends on the scope of the study. As far as possible, it should be coherent across related projects.

The recommended solution is to use a standard set of models structured in packages with one package for each

of the eight aspects of the topology.

A repository is a set of objects and information, shared among a community of

actors.

Sharing a common repository is essential to Enterprise Architecture. Promoting and enabling reuse is part of the

same current as the business component approach.

It is preferable to build one repository per aspect. “Business Knowledge Repository” for the semantic model

encompassing the entire company, “Organization” for the pragmatic model, the architectures…

The reach

The model

The model and the
aspects

The repository

Modus: the methodology Praxeme

14 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The products (cont.)

The semantic model: concentrate on fundamentals to reveal the stable
core

Modelers aiming to reveal the semantics of reality, approach it without any

preconceived ideas. This attitude is not spontaneous or natural. It requires conscious

and renewed efforts to set aside organizational and technical determinations or habits. The quality of the

resulting semantic model comes from this ability to stand back from current practices and existing solutions.

Modelers must also strive to capture the essence of the fundamental core of the domain in abstraction of its

apparent complexity.

The simplicity of the model then must be preserved against the general tendency to complicate things. One

response is to demonstrate in what way the fundamental model reflects reality and how it can “unfold” into

multiple forms taking into account the diversity of real situations.

The language used by Praxeme for semantic modeling comes from the object

orientated approach. The modeler aims to represent the mental universe of the

actors, and hence looks for the most natural means of representation. Object notation, standardized as UML, is

an adequate representation, as long as the models are sufficiently expressive.

UML terms such as classes and class properties will be used (information: attributes; activities: operations;

linking: associations). The structural properties are implemented by relationships: inheritance or associations.

The model is structured in object domains, represented by packages (see the chapter “The procedures” about the

breakdown of object domains).

Since these are standard representation categories, the model below is just a simplified view of the UML

metamodel.

Figure PxM-02en_7. Semantic modeling terms (a fragment of the Praxeme metamodel)

The attitude

The terms

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
15

The products (cont.)

The pragmatic model:
express the –local– need and guarantee –global– consistency

The modeler‟s attitude depends on whether he/she is elaborating a Utilization view

or an Organization view.

In the first case, the functional approach will try to express the needs and

preoccupations of the “user” and is guided by empathy for the user. This may lead to immobility and the

perpetuation of current practices and user habits.

In the second case, the information flows and the evolution of business objects

across the whole system are taken into account. The barriers of the first approach are removed and an overview

of the whole system is sought. The design of processes may encourage further simplification.

Pragmatic aspect models use the classical UML categories:

 Actors (types of actor).

 Activities: a notion with variable granularity covering high-level business processes down to the details of

operations (or even lower), by way of use cases..

 Use cases: the elementary interaction between an actor and the system (assimilated to a “functional

transaction”: the execution of a use case involves only one actor and is indivisible unless it is aborted.

This definition of a use case restricts the use of UML. Use cases are identified according to the actor‟s

objectives.

It may also be necessary to model organizational objects (dossiers, structures…). In this case, we use the same

categories as the semantic model.

Figure PxM-02en_8. The terms for pragmatic modeling (extract of the Praxeme metamodel)

The attitude

Utilization view

Organization view

The terms

Modus: the methodology Praxeme

16 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The products (cont.)

The pragmatic model: how to innovate processes

According to the Topology the pragmatic aspect is dependent on the semantic

aspect. This dependence may seem unorthodox and certainly contradicts most

current Business Process Modeling practices which make use of specific tools and

are completely autonomous. The process model is also almost always considered to

be the first model to establish.

It is not surprising then that this subordination of pragmatics to semantics, gives rise to debate with BPM5

analysts and needs to be justified. The justification is that this specificity has important consequences as it

permits a truly innovative approach during the design of business process models.

The semantic aspect focuses on “business objects”. The semantic model is refined

and lean and all references to organization are expelled. There are no references to

actors, their activities or organizational rules, which are described in the pragmatic

aspect.

In a nutshell: The semantic model describes objects and the pragmatic model describes actions.

Our tenet is that to design actions well, the objects the actions effect must be clearly identified and well

understood.

This common sense principle is represented in the System Topology precisely by the dependence of the

pragmatic aspect on the semantic aspect. This allows the description of processes to refer to the “business

objects”, described in the semantic model. The business process design process is therefore inverted.

5 BPM: business process management.

The dependence of
pragmatics on
semantics

Objects and
Actions

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
17

The products (cont.)

The pragmatic model: the terms

The metamodel, which is being gradually presented, aims to found the method on a

precise terminology. This cannot be achieved by a simple glossary, which is always

somewhat vague, but must resort to a detailed and argued model.

This endeavor is particularly edifying for the pragmatic aspect. It brings to light fundamental differences of

perception and approach. Their consequences and the distance we take from usual process modeling practices

are detailed in a specific guide (reference “PxM-20”).

The term “activity” is, on examination, very ambiguous: it applies both on a

descriptive level (model) and on an operational level (reality). UML uses the term

for all levels of processing and, what is more, uses it to evoke human intervention.

This is why the Praxeme metamodel has discarded the term “Activity”, adopting in its place the term “Practice”

on the descriptive level and the term “Mission” for the implementation of a practice (see the “Production”

model in Praxeme metamodel).

Figure PxM-02en_9. The terms of the pragmatic aspect (extract of the Praxeme metamodel)

 ActivityGraph

<<metaclass>>

Pratique

<<metaclass>>

Action représentée

*

reçu

émis
représente 0..1

émetémetteur

contrainte

moyen type

<<metaclass>>

Savoir-Faire

assemble

composant

* implique

réponse

*

activité

Objectif

motivation

* justifie

<<metaclass>>

Expression

Représentation

<<metaclass>>

Graphe d'activité

icône
*

*

ordonnance

1

0..1

procédure

*

respecte

déclenche

*

*

*

1

<<metaclass>>

Type de ressource

<<metaclass>>

Action

<<metaclass>>

Classe sémantique

<<metaclass>>

Règle d'organisation

*

*

<<metaclass>>

Cas d'utilisation
ActionState

<<reprend>> <<reprend>>
*

*

reçoit

*

récepteur

*

signifiésignifiant

<<reprend>>

UseCase

<<metaclass>>

Événement

The role of the
metamodel

Activity and
practice

Modus: the methodology Praxeme

18 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The products (cont.)

The logical model: building sustainable structures

The goal of logical architecture and design is to structure the software in a way

which will:

 Take into account future potential changes.

 Bear in mind strategic objectives.

Among the motivations are:

 The drive to „urbanize‟ the information system in order to reduce redundancy and allow component reuse.

 To open up the system and allow easy integration with partner systems6.

 IT agility or, at least, to easily adapt to reconfigured organizations.

 The possibility to multiply, implement or change the kinds of interfaces proposed at minimal cost…

The logical aspect is considered to be totally independent of the technology. This is detailed below.

Logical architecture gives a unified vision that goes beyond the abundant and

diverse technical solutions.

There is, and there always will be, a gap between the representation of reality (concepts, objects, processes…),

on the one hand, and software, on the other. It is possible, however, to take certain structural decisions about the

software at the logical level. These decisions are not, or are only partially, subject to technical constraints and

changes.

The logical architecture echoes the generic choices that structure the IT system as defined by software policy

and enterprise strategy.

The logical architecture aims to elaborate the optimum structure for software,

independent of final technical decisions.

Logical design provides sufficient detail for the definition of logical components.

6 That is about interoperability and federations of systems.

The Perspective

What is at stake

The objective of
logical design

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
19

The products (cont.)

The logical model: a language of its own

Because of its intermediate position between the external view of the enterprise

system (real life) and the IT system, the logical model has its own vocabulary. This

vocabulary has to be able to render reality (semantic and pragmatic) in the system, whilst enabling decisions on

how to structure it.

In Praxeme the terminology of logical modeling is derived from the notion of a logical service (see definition p.

11). It uses the metaphor of a factory, with its machines, workshops, etc. The choice of terms is not fundamental

and other metaphors have been used for this aspect (business component, urbanization, city planning, blocks

…). What are important are the topological constraints that these metaphors impose.

The logical service is the elementary constituent

of the system on the logical level.

Thousands of services are assembled in different levels of logical

aggregates.

Figure PxM-02en_10. The interlocking of logical aggregates

The table below provides, along with definitions, some examples of rules.

The aggregates Logical Machine Logical Workshop Logical Factory

Their definition A coherent set of logical

services.

A set of logical machines. A set of logical workshops.

Demarcation criteria The services apply to the

same class (the same notion).

“Unit” services are

distinguished from “set”

oriented services.

The roles of the logical

machines regrouped within

the same workshop are closely

related.

Factories correspond clearly

to object domains enhanced

by cross-sectional

mechanisms.

Their relationships The machines in a workshop

can work together through

delegation.

Machines addressing the same

sets of data (tables) are

gathered within the same

workshop.

Workshops using the same

database (or collection of

databases) are placed in the

same factory.

The logical model not only contains the definition and structure of services, but also

the logical data model. This data architecture can be very complicated, and may

even be totally disconnected from the service architecture. This is the case when the

service architecture is implemented on an existing database. Whatever the situation, whenever SOA is adopted,

the service level will always be found to overlay and mask the data level.

The terminology

The terms

The logical data
model

Modus: the methodology Praxeme

20 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The products (cont.)

The logical model: the stratification of the system

Depending on their origin, we distinguish between different categories of logical

machines:

 Machines that implement a semantic class are called “Business Logical

Machines” (BLM) or “distributors”.

 The machines expressing organizational decisions are called “Organization Logical Machines” (OLM) or

“orchestrators”. They are delimited using criteria which could be the use case, the type of actor, the process,

etc.

 Other machines arise from logical or technical considerations. They are called “Transversal Machines” or

“utilities”. They provide general facilities such as event management or encoding.

The logical architecture fixes the rules of identification, structure and design which apply to all the elements of

the logical aspect. Concerns of loose coupling and system governance motivate these rules.

According to the rules of architecture, the information system is made up of three

circles:

1. The core is made up of “business logical machines”. It is called the “Foundation” or “Core” stratum.

2. The intermediate circle isolates the organizational decisions in “organization logical machines”. That is the

“Organization” (or “Operation” or “Activity”) stratum.

3. An outer circle is the “Interaction” stratum, which provides the system entry points for workstations or other

interfaces (possibly to other systems).

Figure PxM-02en_11. The stratification of the information system, according to the rules of logical architecture

The categories of
logical machines

Stratification

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
21

The products (cont.)

The elaboration of service architecture

As well as the terms exposed so far, logical design distinguishes between:

 The individual (unitary) logical machines, whose services process only one

instance (only one object or occurrence).

 The set orientated logical machines, regrouping services such as instantiation, queries and statistics.

Logical architecture translates semantic class behavior as two types of logical machines. The properties of the

class (including the associations) are distributed on these machines depending on their reach.

The metamodel below maps higher level modeling elements onto the logical

elements.

Figure PxM-02en_12. Synopsis of the Praxeme metamodel for the logical aspect

The class diagram above only presents part of the metamodel. It shows the main

terms used to describe the logical architecture, with a “service” style. Most of these

terms are linked to the metaclasses of higher-level aspects, making derivation possible.

The details of the metamodel express topological constraints that oblige the logical architect and the designer to

loosen the coupling of the system.

The metamodel presents other considerations for the logical aspect, regarding in particular the data level.

The terms

The equivalence

Comments

Modus: the methodology Praxeme

22 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The products (cont.)

The system covered by the models and viewpoints

The Enterprise System Topology provides the structural principles which Praxeme

refers to when defining models and deliverables. It offers the advantage of defining

models as exact and complete representations, limited to a clearly identified aspect. It also presents the

dependencies between models. These dependencies indicate how information is linked from one model to the

others. In this way, responsibilities at every level of modeling are clearly identified.

The definition of deliverables lies at the junction between the dimension “Product”

and the dimension “Process”.

Figure PxM-02en_13. The workspace of definition of deliverables

The deliverables are defined in function of the process.

They are defined for the ends of phases which have the

advantage of being clearly identifiable. They meet the

needs of communication and decision. Situated in the

“Product” dimension, their definition conforms to a

rule: at the end of the process, the added content of all

the deliverables must cover the entire scope of the

study. Praxeme divides up the field by projecting the

list of aspects over scope7.

The notion of “view” has been used for several years now and by several methods.

A view is not the same thing as an aspect. Praxeme uses both notions.

With the term “aspect”, we designate a characteristic of the system object (the scope of the study), characteristic

which is independent of the point of view and linked to the nature itself of the observed reality.

However starting from a typology of actors (strategists, process owners, organizers, IT people, etc.), we define

views, which can refer to elements drawn from one or more aspects.

For example, the “Organization View” and the “Utilization View” are both extracted from the complete

pragmatic model. The first provides a global vision of the organization and processes. It interests the

organization designer. The second provides insights into the perspective of different types of actors in the

organization. The “functional view” provides another example, examined on the next page.

In conclusion the notion of aspect cannot be mixed with the notion of view.

7 The document with reference “PxM-03” deals with the process and related topics.

The principle

The deliverables
defined by the
process

Aspect versus view

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
23

The products (cont.)

The deliverables

The notion of functional specifications is coherent because it is used to

communicate with a certain category of actors. Functional specifications can

contain, pell-mell, a small fragment of semantics, operational requirements, some screen (UI) specifications

(software elements) and all this sprinkled with some organization rules.

By definition, functional specifications express requirements in terms of functions.

Going straight to essentials the use case dossier is perfectly adapted to the

expression of requirements concerning user activity. It does not describe “screens”

(UIs) which, being subject to design decisions, are left to the mock-up and the related dossier.

The opposition between generalities and details (general specifications versus detailed specifications) is not a

structural element of Praxeme. Every aspect requires a formal and complete model. The level of detail and

completeness of each artifact can be adjusted to the context of the project and immediate needs. A model is not

considered to be definitive until it describes the complete scope of the study, for the designated perimeter and an

aspect of the topology.

On the other hand the notion of reach allows the introduction of artifacts which tend to make the „urbanization‟

and system-level decisions sustainable.

To ensure good communications in projects, deliverables can be accompanied from

the initial phases with a mock-up. Mock-ups, rather than text and models, provide a

directly appreciable and realistic image of a solution.

If it is an IT solution, the mock-up is a software component, to be placed in the software aspect. Nothing

prevents it, however, from being included in an artifact like the functional specifications, before development or

even technical decisions.

The artifacts include:

 The project dossiers: they record decisions as a project progresses and they are

only of value during the project‟s lifetime.

 The global dossiers: their reach is the entire system; they are a reference for the whole enterprise. They can

change but they are under the control of a central authority.

 The folios: they may potentially be produced within a project, but their format is designed to make them

common and sharable elements. As such, they acquire a visibility and a lifespan that surpass the project. The

folio life-cycle therefore takes into account its use by multiple actors on multiple projects.

The method describes the artifacts by commented forms. They can also be the

object of UML profiles, installed in modeling tools.

The functional view

The functional
specifications

The mock-ups

Dossiers and folios

The description of
deliverables

Modus: the methodology Praxeme

24 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The process

Implementing the topology

This section “Process” does not prescribe a complete process and does not give all

of Praxeme‟s indications for this dimension. Here, only major guidelines are

presented, those which help organize the work and processes as far as the

transformation of the Enterprise System is concerned. The document “PxM-03” presents this approach more

fully. It describes the conditions under which the method Praxeme can be coupled with another method or with

a reference process. This is easy with Praxeme, because Praxeme highlights the “Product” and “Procedures”

dimensions, whereas other methods deal mainly with the “Process”.

The separation of aspects leads to the isolation of different elements of a solution,

which evolve at different speeds.

This leads to following advantages:

 Facilitate the definition of work steps (see p. 25).

 Give more visibility to decisions, by serializing.

 Impose a strict organization of information in the documentary base of the Product (the Enterprise System or

a domain or an application).

 Isolate the stable core (semantic and logical), preserving it against organizational changes and technological

innovations.

 Manage skills thanks to specialized disciplines (see p. 30).

Separating aspects leads to the introduction of long-term governance and quality requirements, such as

adaptability (or agility), robustness and technology independence, into the structure of a solution. This provides

a solid basis for „urbanizing‟ the IT system.

The topology is a first reply to transformation needs and it aligns the IT System

with the strategy of the enterprise:

 It helps design the information system in a modular way, so that it can adapt to technology changes, and it

can be opened up to partners and to multiple interfaces.

 The topology separates design elements which evolve at varying timescales and with different logics. It

encourages, hence, structuring the software in a way that allows it to absorb change more easily.

The “service-oriented architecture” (SOA) enforces the benefits of separating the

aspects. The building or acquisition of services (more than simple classes) imposes

supplementary design rules. The design targets a middleware integrating the

components, of which some can be published, found on the market or be exchanged with partners.

Content of this
section

Consequences on
the work phases

The gains

The “services”
orientation

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
25

The process (cont.)

Modeling: between analysis and design

The dichotomy “analysis/design” is a classical issue of software engineering (and in

general of engineering science).

The tendencies of the past years (especially the generalization of iterative cycles)

have blurred this simple opposition.

Classic software development methodologies define the activities (of analysis or design) and the phases (time

segment, breakdown of work unit). They follow the waterfall lifecycle. The names of the phases indicate the

activities. Now we must separate these two notions, since a given phase can unite both types of activities. In an

iterative development process, one iteration often contains analysis, as well as design activities.

Even though the same tools can be used for analysis and design, analysis and design need two radically different

attitudes.

To analyze is to observe. The term evokes the breakdown into the smallest of

elements; an attention to detail. When analyzing, the posture of the modeler is characterized by:

 being passive (he does not take any initiative; he is satisfied by depicting his observations);

 minuteness and thoroughness;

 potentially tracking pain points in order to feed critical reflection (analysis of the current situation, audit).

To design is to invent. The designer‟s posture is very different. He is expected to

imagine one or more solutions to a problem or for a stated need. The characteristics of this activity are:

 taking into account the requirements (which have been formulated and analyzed beforehand) or covering the

need;

 inventiveness, based on technical know-how of possible solutions;

 economic evaluation of proposed solutions…

Analysis versus
design

Analysis

Design

Modus: the methodology Praxeme

26 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The process (cont.)

Pre-modeling: facilitates the transition

The real function of processes is to organize collaboration between people with

different expectations, different cultures and different incentives. We insist a lot on

modeling because this „representation‟ technique is the only instrument of a reliable

and trustworthy communication, from one end to the other of the transformation

chain.. The Enterprise System Topology segments this chain, but one has to start somewhere: at the place where

the model does not exist.

The true starting point is the knowledge the actors have of the system. This knowledge is seldom formal or

formalized. At best it is written down, either in pre-existing notes, or by the notes the modeler writes in his

search of knowledge.

There is an abyss between the first formulation and the first model! The pre-modeling stakes out a first bridge

between user language and the first model.

Pre-modeling is a step which should not be neglected. It has an essential role in the

communication, especially with senior management and “business” management.

The products of pre-modeling are not distributed – at least, not directly – on the aspects of the Enterprise

System Topology. This is not a reason to exclude them. They have their place in the general framework, before

the modeling. The collection must be very flexible and allow different perceptions of the system. One observes

that a same notion can have different names in the same organization or that the same term can have variable

meanings, depending on the roles or people‟s backgrounds.

The pre-modeling uses simple tools, allowing the manipulation of self-evident

notions:

 First of all, the glossary (dictionary) is a means of collecting terms and

spontaneous user definitions. To be more efficient, the models show how these intuitive terms are reused

and restored. This instrument of communication should become a more elaborated form of thesaurus,

showing semantic relationships.

 The management of requirements is also part of the pre-modeling. Its tools answer the same needs of

traceability towards the models. The development process should schedule a review phase of requirements,

before the design.

 The strategic and operational goals are another category to be taken into account in the pre-modeling. One

should ensure that each investment, translated at one moment or another in the model, is attached to the

objectives tree.

These simple notions of pre-modeling – terms, requirements, objectives – can give rise to quite a few concerns

in practice…

From natural
language to the
first model

Pre-modeling

The terms and
tools

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
27

The process (cont.)

The target levels

In addition to the need and the local solution (specific response to a need),

enterprise architecture adds two considerable categories of objectives:

 the “System” itself, that is the global solution, with a managed structure,

change and content management;

 the “vision” or analysis and anticipated needs (watching outside the organization: strategy of the

organization, the market, possibilities and future preoccupations).

In other terms, the same movement of Enterprise Architecture reconciles the overall design of the system on the

one hand and prospective analysis of the market on the other.

Figure PxM-02en_14. The target levels

The transformation processes include the necessary activities to serve the

organization on all these different target levels and to contribute to operational,

organizational and strategic adjustments. The figure below illustrates this (see “PxM-03” for details).

Figure PxM-02en_15. The macro-activities depending on target levels

The elements
which polarize the
activities

The consequences

Modus: the methodology Praxeme

28 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The process (cont.)

The approach: possible actions in parallel

The diagram on page 22 shows the articulation of the elements describing the

system. The transformation process respects the logical dependence between the

products. One can deduct from this diagram:

 The possibility of drawing a parallel between the modeling of the semantic and the pragmatic aspects.

 The source of service design (the logical design is inspired from the semantic and pragmatic models).

 The constraints and objectives are taken into account in the logical architecture.

 The need to have synchronization points between the aspects.

Without forbidding parallelism, the dependency relationships between models

require some precautions. The diagram on page 22 shows a dependence between the

usage view (the use case folders) and the semantic model. This dependence is precisely the result of the value

given to the semantics in Praxeme and our preoccupation with basing the documentation on the substrate of the

Business Reference Model.

This leads to a practical consequence: work on the semantic and pragmatic models can be led in parallel

providing that regular synchronization checkpoints are held. These checkpoints give the opportunity to verify

the convergence of resulting products of the two aspects. The success of such an approach relies on

coordination meetings.

Figure PxM-02en_16. The design approaches

The basics of the
approach

Parallelism

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
29

The process (cont.)

The approach: work on architecture

The first step of this approach is the architectural analysis, where constraints and

goals, especially high level ones, are collected.

This work allows the alignment of the information system with business interests

and future anticipated changes. This subject will also enter into the almost certain arbitration between different

design scenarios or between divergent local interests. Furthermore, architectural analysis will prepare long-term

budget discussions.

Architecture is the design discipline which fixes overall choices, in other words it

addresses the entire system. It can be broken down into three sub-approaches:

 The logical architecture which will be supported by enterprise architecture

arguments (see pp. 31 et seq.).

 The technical architecture (cf. the folder type FRM-50).

 The component approach for those parts of the system which can be covered by off-the-shelf software.

These sub-approaches can be led in parallel with some precautions, especially for the negotiation between

logical and technical aspects (see p. 41).

Figure PxM-02en_17. Architecture approach

The constraints
and objectives

Three sub-
approaches

Modus: the methodology Praxeme

30 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

The process (cont.)

The activities of the overall scope

The overall dynamics (p. 27) show the necessary activities from the target levels

onwards. The will to structure the System introduces new activities, needed to

ensure the objectives and requirements of the overall scope. These particular activities are different from usual

development activities by their goal, scope and delivery date.

The objectives of these activities are part of the organization‟s strategy.

These activities take into account the comprehensive approach to the Enterprise

System (as opposed to the classical development process and to the project mode).

These activities are deployed on a long-term basis.

We enter into a new dynamic coordinating project activities and system activities.

The diagram below shows „system‟ activities and their position as related to the

normal „project‟ development activities.

Figure PxM-02en_18. The activities of the overall scope interacting with the projects

The characteristics

The goal

The scope

The timeline

Their organization

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
31

The process (cont.)

Enterprise Architecture and IS urbanization

The Enterprise Transformation Manifesto approaches the notion of Enterprise

Architecture from the standpoint of the enterprise, as a whole8. The manifesto

positions this discipline as the necessary link between the multifarious specialties that contribute to analyze and

transform the enterprise, starting with the strategy and ending with deployment and monitoring. Therefore,

Enterprise Architecture is an important factor that comes into play when transforming the enterprise. Its mission

is to put together every specialized approach, so as to embrace all aspects of the Enterprise System, to reconcile

the various points of view and to stimulate synergy and creativity. The definition below is an extract of the

Enterprise Transformation Manifesto:

The basic principle of Enterprise architecture is to adopt an attitude which gives priority to the overall and long-

term requirements rather than local short-term ones.

Inside Enterprise Architecture, urbanization of IT system9 is the design discipline

which focuses on the information content of the Enterprise System.

Over the years, software development covering specific local requirements, added on top of existing

applications, has built an increasingly complex IT system. Various functional application units, built with

different technologies, rapidly become obsolete when new technologies emerge and may be subject to all kinds

of change due to the speed of business evolution and change.

To master this complexity and to take advantage of new technological possibilities, it becomes necessary to

reorganize the system with a more economic architecture. This architecture must take into account new

technologies. First of all, it must embrace a comprehensive vision of the enterprise, its constraints and objectives

as mentioned beforehand.

As for Enterprise Architecture, the horizon and scope of IT urbanization cover the whole system and the long-

term vision and roadmap.

Essentially, the procedures and methods used for IT urbanization are those of

mapping applications (for the „as is‟ situation analysis) and defining the logical

architecture for the design. Today, UML supports this discipline and transforms it

from the inside by giving it a precise notation. As a result, there remains no excuse for the ivory tower syndrome

that all too often characterizes this craft. The modeling technique assures continuous coherence between

8 See http://www.enterprisetransformationmanifesto.org.

9 Also known as “IT city planning”.

Definitions

IT urbanization

The terms of IT
urbanization

IT urbanization (or IT city planning) is a design discipline which aims

to structure the information system and

align it with the enterprise‟s strategy and business.

Enterprise Architecture is the discipline that analyzes the strategy of the enterprise and determines the

main decisions for transforming the Enterprise System.

http://www.enterprisetransformationmanifesto.org/

Modus: the methodology Praxeme

32 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

overall models of architecture and detailed design models. This coherence leads to a revolutionary change of

roles and responsibilities.

The definition of logical architecture results from the combination of both notions:

 architecture, which implies that the scope is the entire system – whatever

aspect is considered;

 the logical aspect, as defined through the Enterprise System Topology.

A logical architecture is also the by-product of this activity. It is the description of a given system, at a logical

level.

The founding act of IT urbanization consists in publishing a target architecture for

the enterprise („to be‟). It simply presents a logical architecture graph showing the

“ideal city map”, an overall description of the IT system one would like to build.

This target is even better when the architect can free himself from the current situation, simplify the system and

redesign it with criteria ensuring its stability. With such an aspirational and daring view, the architect will face

skepticism and fatalism. It is, therefore, important to explain the intended uses of this “ideal” description. Very

rare are the situations where it is possible to implement the system in strict accordance with the target. Other

uses of the logical description include:

 specification of the flows and services to be developed;

 integration policy;

 interoperability policy;

 simplification of the existing systems or compensation of identified flaws;

 overhaul of the system or its improvement.

It is not the place, here, to elaborate on these topics.

The target architecture can only be achieved after several long years, on the

condition that it is supported by the senior management, the only authority capable of driving it with continuous

(super-) vision and necessary effort. The success of enterprise architecture also relies on operational skill and

leadership.

The roadmap for transformation contains a succession of stable and predefined states of the system, which will

lead, year after year, from the „as-is‟ situation to the „to-be‟ target. Each state is described by an intermediate

architecture graph, which allocates the annual investments as closely as possible to the target. In this way, the

investment reaps more benefits.

More on processes and organization is to be found in “PxM-04”.

Logical
architecture

The target
architecture

The roadmap

Logical Architecture is a design discipline that develops the optimum description of the software

system. This description is relatively independent of technical choices and takes into account general

constraints from business, as well as IT legacy and orientations.

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
33

Modeling Procedures & Methods

Portraying before doing

Procedures and methods are instructions for the work to do. Contrary to processes,

they are situated at an individual level: they are the guidelines for a precise work

step. A procedure can be related to a discipline (for example, internal design) but it can also be used by several

disciplines (for example, a documentation procedure). Sometimes, it is supported by a tool.

The following major procedures can be incorporated into Praxeme.

Figure PxM-02en_19. The list of procedures in Praxeme

Procedure Aspect
concerned

Definition
(objective of the procedure)

Semantic Modeling Semantic aspect Representation of the analyzed reality, true to itself, that is abstracted from

organizational and technical contingencies.

Requirement-
gathering

Pragmatic aspect

(Use-case View)

Formulating functional and operational requirements by using the

technique of Use Cases .

Proof of
exhaustiveness of

Use Cases

Pragmatic aspect

(Use-case Views)

Verifying the exhaustiveness when identifying Use Cases.

Process Design Pragmatic

(Organization

View)

Design of activity flows, not from existing processes, but from the life

cycles of business entities.

Logical architecture Logical aspect Design of the overall structure of the software system, with a relative

independence of technological choices.

IS Urbanization
(IS city planning)

Logical aspect

and Software

Elaboration of a target to channel long-term developments pushing them

towards an ideal structure. Elaboration of a roadmap leading to this target

with regards to investments.

Technical
Architecture

Hardware and

Technologies

Design of the technological infrastructure: technical choices, technical

components, development rules and tools associated with technical

choices.

Elaboration of
scenarios

All aspects Determining scenarios for the design of a solution. (Several solutions can

cover a requirement. The solutions should be assessed so as to retain the

“best” one.)

Internal Design Software Design of a software element from a specification, using the object

approach and design rules imposed by general objectives (enterprise

architecture, reuse, etc.).

Test Design All aspects Identification of test cases.

Simulation of the
models

All aspects Verification of the quality of a model by implementing it and running it in

an ad hoc technical environment.

Definition

The major
procedures

Modus: the methodology Praxeme

34 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Modeling Procedures & Methods (cont.)

Semantic modeling: going straight to essentials in order to isolate the
stable core

In the semantic aspect, the representation of the System aims to depict:

 the notions, concepts and business entities of the scope,

 their relationships,

 the attached rules.

Organizational and technical contingences are removed from this representation. Its value lies in the abstraction

and associated simplicity. The semantic model contains the essentials only; this makes it simple and stable.

The simplicity of this description frees the imagination and allows the designer,

later on, to have a larger range of choices relating to the organization, the logistics

and the technology.

The effort of abstraction helps us get back to basics and, in so doing, frees us from various existing practices

and paves the way for a simplification of the System.

The construction of the semantic reference model (the core business knowledge) equally allows us to capitalize

on the intellectual knowledge available, the ways of action and even on the solution itself. It is a knowledge

management tool.

The modeler, who has the task of constructing the semantics, approaches the

business reality, without prejudice. Despite appearances, this attitude is not

spontaneous. It demands a particular effort on the part of the modeler, an effort which needs to be constantly

renewed, in order to set aside organizational and technical circumstances. The quality of the semantic model

resides in its ability to break away from current practices and the existing solution.

Furthermore, instead of troubling itself with all the apparent complexity of the domain, the model needs to

capture the vital things and to isolate the fundamental knowledge.

The semantic modeling may reveal its inventiveness.

The modeler has to defend the simplicity of his/her model against the general tendency to complicate things.

One argument for this is to show how the essential model restores the reality and how it can “unfold” and

multiply itself to take into account the diversity of concrete situations.

The definition

The Stakes

The Attitude

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
35

Modeling Procedures & Methods (cont.)

Semantic modeling: some precepts

The principal classes play an essential role in the transformation of the Enterprise

System. Indeed, they provide the starting point to build the stable core around

which the system will crystallize.

The strongest criterion is this one: at least one Use Case uses it as the central

business entity. This criterion is also part of the procedure of verifying the completeness of the Use Case

inventory.

The first justification of a central business entity class is its importance in the user‟s language. This is then a

pure semantic criterion, difficult to formulate.

Here are some other formal criteria to designate a principal class:

 Cardinalities of associations from the class (it is linked to several satellite classes with multiple cardinalities;

maximum cardinality = 1, on its side).

 Aggregation (the class assembles several other classes).

 The presence of a state machine for the class (with significant states from the user‟s point of view).

The semantic model, even at the highest level of abstraction, has to obey all the

requirements of a true model: it is complete, detailed and valid. It describes in full

the notions of the scope of analysis. Most importantly, the model must contain the

description of the information and operations attached to the semantics of the notions and business entities. The

rules related to the organization are excluded from the model (they belong to the pragmatic aspect); but the

business rules must imperatively be encapsulated. The modeler designs the semantic classes like micro-

machines, they are responsible for their internal state and capable of providing all the services underlying their

semantics.

Business entities evolve, transform themselves and have a different behavior

depending on their state, at least the principal ones. Their life-cycles are an

important part of the model. A solution or IS (Information System), based on state

machines, reveals itself to be simpler and much more robust.

The encapsulation of business rules and the design of life-cycles of business entities

make operations emerge with semantic value. The model describes these operations

completely: signature (name, input/output parameters with their types), contract

(pre- and post-conditions), internal description (algorithms if necessary).

The System has to be broken down on the semantic level. This breakdown uses the

business entity criterion (as opposed to the function); it breaks the IS down into

business object domains.

Identifying the main
classes

Criteria

Encapsulating the
rules

Respecting the
change of objects

Documenting the
operations

Decomposing the
system

Modus: the methodology Praxeme

36 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Modeling Procedures & Methods (cont.)

Business Process Modeling (BPM)

We will not talk here about the classical functional method of BPM. This method is

too close to existing practices and stops us from taking enough distance to really

innovate. Here we rapidly outline Praxeme‟s innovative approach to Process Modeling 10.

We start from the Enterprise System Topology with the link from the pragmatic aspect toward the semantic

aspect. We consider that every important process is defined by a goal which produces or transforms an essential

business entity. Thus, the best process is the one which accompanies the life-cycle of the business entity, the

most truly and with the least complications possible. So, to model the business process, we do not start from the

activity – which is most probably already wrought with organizational rules – but we observe the business

entity‟s “life” and inner logic. In doing so, the approach is turned around and gives us another point of view.

This is why this method helps us to thoroughly rethink the activities, the business processes and even the

organization.

The business entity is present in the semantic model. The designer of the business

process must eliminate all secondary artificial objects and only keep those business

central entities (to give an example: the act of ordering rather than the invoice).

The semantic modeler should have associated a state machine to the semantic class

representing the business objects. If not, it is the moment to complete the semantic

model!

The state machine is represented by a diagram showing the authorized transitions

between states. This is then turned inside out, like a glove, to become an activity

diagram. This activity diagram, without swim lanes, expresses the designed business

process. It helps to isolate the necessary activities.

Only at the last step do we add the notion of the actor and his responsibilities .This is

why the modeler has more freedom to redistribute the activities. He can, if possible,

propose a new distribution of roles, activities and perhaps a new organization around

the process.

Article “The Six Fallacies of Business Process Improvement” (available on the

website) .

10 For further details, please refer to the Guide of the pragmatic aspect (reference: “PxM-20”).

How to innovate

The procedure

Further reading

Establish the

object life-cycle

Infer the
conceptual

process

Assign the

activities to roles

Identify the object
at the core of the

process

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
37

Modeling Procedures & Methods (cont.)

Analyzing requirements via the Use Cases

Praxeme‟s definition: A Use Case is an elementary working situation.

It implies an interaction between an actor and the system.

The definition given by the standard UML allows different interpretations. On the

ground, modelers find it difficult to agree on the level of granularity of this notion. Praxeme‟s definition helps to

overcome this difficulty. It also provides the modelers with an identification criterion with the following

practical consequences:

 Only a single user participates in the run of a use case (one occurrence)11. This run-through of a use-case is

uninterruptible (excepting run-exceptions, error cases).

 The use case covers a precise user intention towards the system.

NB: this procedure is creative and aims to go beyond the simple gathering of

requirements. It focuses especially on the actor‟s motivations.

In this approach, the modeler proceeds from the exterior to the interior. Outside the

system, he first identifies the external actors and then the internal ones. For the first

he can only state things. For the second, he can possibly propose a new distribution

of tasks via the roles (design decision).

The best criterion for identifying use cases is the actors‟ motivation. “What do they

expect from the system?” “What events bring them to interact with the system?”

Knowing the circumstances of the interaction, one can better analyze the actor‟s

expectations, taking care to focus attention on the actor‟s motivation or intention

(instead of on how the system reacts). “What result does the actor expect from the

system?”

The Use Cases represent and summarize the elementary interactions between actors

and the system. By “elementary”, we mean the running of a use case with the

intervention of only one actor.

By rapidly analyzing the content of each use case, the modeler can factorizes those

which could be satellite use cases. For this task, he draws the diagram of use cases.

He retakes and verifies the analysis of user access rights.

See the worksheet FRM-25 and its annotations FRM-25c.

11 When an activity requires the action of several players or when it has to proceed through several steps, then it is not a use

case but a process.

What is a Use
Case?

The procedure

Further reading

Identify the

players

Collect the types

of events

Infer the
interactions with

the system

Document the use

cases

Arrange the use

cases

Modus: the methodology Praxeme

38 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Modeling Procedures & Methods (cont.)

Logical architecture

The terminology is defined p. 19. It defines and conditions the approach of the

logical architecture.

The business logical machines (BLM) are derived from the classes of the semantic

model. The modeling effort is concentrated on the semantics (the core of the business, exempt from

organizational and technical choices). This has several advantages:

 It formalizes the core business knowledge.

 It simplifies the model, making it more compact and more “natural”.

 It helps discover the services with high business value.

The Organization logical machines (OLM) are derived from the pragmatic model (organizational), mainly from

the use cases. They serve as relays of the core system, comprised of the Business Logical Machines.

The logical aspect is structured into three strata12 and obeys topological constraints:

 “Core” stratum (or Foundation): it isolates the services that translate the semantics, the core business

knowledge. It is stable, highly reusable and protected by the other strata. The services of this stratum are

called “internal”.

 “Organization” stratum (or “Operation” or “Activity”): The OLM isolate organizational choices, which

include access rights and visibility conventions with partners. This stratum offers “external” services. One

can have several of these services as relays of the same internal service: for example, one for internal use by

the organization‟s staff, another one for external use by partners or clients to control or restrict access rights.

 Interaction stratum (or “Periphery”): the work-stations (depending on technical choices for the GUI) and

other interfaces giving access to the system. It includes all sorts of communication channels and interactions

with other systems.

The machines provide services. The services can call each other and conform to the

cooperation principle of the object approach.

This position of the term service is conform to the software engineering tradition (metaphor for the client-

server, TACT method, service-orientated architecture). It is not incompatible with technical categories (such as,

notably, the Web Services solution).

Near mechanical derivation rules allow the passage from the upper models

(semantic and pragmatic models) to the service-oriented architecture (SOA). They are described in the Guide of

the logical aspect (reference: “PxM-40”). The logical architecture hosts the business core and preserves, as far

as possible, its structure. The transformation of the activity model (use case, business process, organizational

structure…) depends on several decisions, of which some are conditioned by the logical-technical negotiation

(see below).

12 The term “stratum” is favored rather than “layer”, since the latter connotes technical architecture.

Summary of the
method

Logical Machines

The Stratification

Logical Services

Derivation rules

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
39

Modeling Procedures & Methods (cont.)

Identifying logical services

In a service-oriented architecture, the atom – the smallest grain of the system – is

the logical service. The logical architecture provides the framework arranging

thousands of services. This begs the question: “How can we identify a service?”. The table below proposes

some ideas for identifying the services.

One can use two complementary approaches:

1. Top down: the logical components are derived from the semantic and pragmatic models.

2. Bottom up: the logical model is completed by rereading the functional details expected (use cases or

activities of business processes).

Each service has a logical identifier, unique in the system (it should be

meaningful).

Figure PxM-02en_20. Deriving logical services from external models

Origin Starting terms Deriving Comments

Semantics Operations of a

semantic class

Basic or internal

service

Usually 1 to 1.

Attributes of a

semantic class

Basic services (type

accessor); “read”

service of a set

machine

Depends on the technical architecture: either

an attribute (if object technology), or a

programmed service. Take into consideration:

write protection and principle of uniform

referent.

Semantics Class Control service of the

invariant class

Set services

Most of the semantic classes lead to set

services. These propose creation, storage, and

administration (counting, statistics) services

Exception: the singleton.

Association Navigation services Should be placed according to the

multiplicities and orientation of the usage

relationships between the machines.

Object domain Logical Factory Important tool to reduce the coupling and for

Enterprise Architecture management.

Pragmatic Pragmatic Class

(actors,

organizational

objects)

“Business” type

Logical Machines

“Organization”

Machine

Two possible options:

 Same treatment as above.

 Or some form of parameters in an

“Organization Machine” (tables of rights,

for example).

Use Case Can be a starting point

for designing OLM

Analyze the Use Case scenarios to detect user

requirements for the system (these can be

interrogations or action requests). They are

covered by the services .

Introduction

Identification rules

Recommendations

Modus: the methodology Praxeme

40 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Modeling Procedures & Methods (cont.)

The documentation of logical services

The logical services are documented by:

 a „request of service‟ form (FRM-44), standardizing communication between

different IT departments;

 a description note, more complete (FRM-45).

These forms can be integrated in the modeling tool, using a UML profile.

The definition of a logical service should let an external requester understand the

objective of the service and its behavior. It contains the following information:

 The name of the service (see preceding page);

 The signature of a service with the parameters, their nature and their input/output function;

 The objective of the service (a sentence);

 The run conditions of the service;

 The signals, which the service can emit.

The run conditions cover the prerequisites and guarantees of the service (pre- and post-conditions), as well as

the temporal mode: synchronous or asynchronous.

It may be necessary for complex services to provide an algorithm. In all cases, the

specification of the service must be clear and one should be able to list the services

called by the documented service, as well as the manipulated business entities.

Indeed, this information allows the verification of the architecture and assesses the coupling value of the

service.

Other information for architecture is necessary: the usage frequency of the service, the exchange volume

(logical flow) generated by the service.

The logical service is represented in Praxeme as an operation on the class stereo-

typed “Machine”. These operations can themselves be stereotyped “Service”.

The behavior of the service – synchronous or asynchronous – is essential

architecture information. It is sometimes preferable to regroup, in the logical

workshops, the services of the same nature (rule of homogeneity).

In order to quantify the logical architecture, one can try to measure the runtime of each service. At this stage,

this may not appear realistic. The designer can, however, evaluate the volumes (number of instructions at the

logical level, number of other services called, different weighting by distance…). This information can be

aggregated and can provide a starting point to reflect on the choice of physical (technical) architecture.

Information to
collect

Definition of a
service

Description of a
service

Representation of
a service

About the temporal
mode

Guide PxM-02en “General Guide”

Ref. PxM02en-gGen.docx v. 1.99.1 Praxeme Institute  +33 (0)6 77 62 31 75  info@praxeme.org
41

Modeling Procedures & Methods (cont.)

Technical architecture

The methodology recommends a step before the elaboration of both the logical and

technical architectures. This step, the logical/technical negotiation, is a precaution

which does not go against the principle of logical independence – which states that

the system or solution should be first designed on a logical plan, independent of technical choices.

The negotiation helps to:

1. fix the terms of definition of the logical architecture (for us: the services) and ensures that these can be

easily transposed into software components;

2. share the transversal issues between the logical design and the technical design;

3. determine the units to be handled by subsequent phases (delivery, deployment…).

Examples: communication inside the system; error handling; transaction

management; business rule engine; translation of state machines; event

management; etc.

The principle of sharing transversal issues is as follows: when the technical architect can propose an off-the-

shelf solution which covers the requirements, one opts for this solution (this is always cheaper); in the other

case, the logical architect is responsible for the design.

The logical architecture organizes the services in different aggregation levels :

logical machines, logical workshops, logical factories.

Which level of aggregation should be chosen for the deployment or the maintenance?

 The deployment unit: this is the unit which cannot be broken down into different pieces to be hosted on

different machines. The usual candidate is the logical workshop (linked to a data structure).

 The delivery unit: work unit for maintenance intervention. It can be thought of as a service. On the other

hand, wider non-regression tests, at least at the machine level, must be put into place.

The technical architecture, is a skilful design discipline covering the entire IT

system for the following aspects:

1. The material aspect or hardware: set of all machines and other electronic components, infrastructure

components (with their capacity, cost, behavior…).

2. The technical aspect, strictly speaking or the technology itself: basic software, technical components, as

well as the development rules that are implied.

3. The physical aspect: the technical architect can only establish the localization rules for the software

components to be hosted on the hardware (he cannot describe the complete physical architecture, because

for this, he would need to know all the software components).

Technical architecture happens in two phases:

1. analysis, which draws up a balance-sheet of the existing IS, collects the

constraints and the objectives (architectural analysis).

2. design, which explores technological possibilities, examines the options and combines them into

architectural scenarios.

Logical/technical
negotiation

Transversal
Issues

Units

Covered aspects

The attitude

Modus: the methodology Praxeme

42 Praxeme Institute  http://www.praxeme.org Ref. PxM02en-gGen.docx v. 1.99.1

Figure PxM-02en_21. Picture showing the themes of the technical architecture

=============== The appendices are missing in this partial translation ======================

To be informed of further publications, please register via the page “Stay informed” on the website.

